Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.
J Chem Theory Comput. 2021 Feb 9;17(2):605-613. doi: 10.1021/acs.jctc.0c01078. Epub 2021 Jan 15.
We employ replica-exchange molecular dynamics (REMD) and a hybrid multiconfigurational quantum mechanics/molecular mechanics (QM/MM) approach to model the absorption and fluorescence properties of bacterial luciferin-luciferase. Specifically, we employ complete active space perturbation theory (CASPT2) and study the effect of active space, basis set, and IPEA shift on the computed energies. We discuss the effect of the protein environment on the fluorophore's excited-state potential energy surface and the role that the protein plays in enhancing the fluorescence quantum yield in bacterial bioluminescence.
我们采用 replica-exchange 分子动力学 (REMD) 和混合多组态量子力学/分子力学 (QM/MM) 方法来模拟细菌荧光素-荧光酶的吸收和荧光性质。具体来说,我们采用完全活性空间微扰理论 (CASPT2),并研究了活性空间、基组和 IPEA 位移对计算能量的影响。我们讨论了蛋白质环境对荧光团激发态势能面的影响,以及蛋白质在增强细菌生物发光中的荧光量子产率方面所起的作用。