Suppr超能文献

比较两种方法在福尔马林固定石蜡包埋组织 LC-MS/MS 蛋白质组学分析中的应用。

Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues.

机构信息

Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia.

Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia.

出版信息

J Proteomics. 2021 Mar 20;235:104117. doi: 10.1016/j.jprot.2021.104117. Epub 2021 Jan 14.

Abstract

The proteomics of formalin-fixed, paraffin-embedded (FFPE) samples has advanced significantly during the last two decades, but there are many protocols and few studies comparing them directly. There is no consensus on the most effective protocol for shotgun proteomic analysis. We compared the in-solution digestion with RapiGest and Filter Aided Sample Preparation (FASP) of FFPE prostate tissues stored 7 years and mirroring fresh frozen samples, using two label-free data-independent LC-MS/MS acquisitions. RapiGest identified more proteins than FASP, with almost identical numbers of proteins from fresh and FFPE tissues and 69% overlap, good preservation of high-MW proteins, no bias regarding isoelectric point, and greater technical reproducibility. On the other hand, FASP yielded 20% fewer protein identifications in FFPE than in fresh tissue, with 64-69% overlap, depletion of proteins >70 kDa, lower efficiency in acidic and neutral range, and lower technical reproducibility. Both protocols showed highly similar subcellular compartments distribution, highly similar percentages of extracted unique peptides from FFPE and fresh tissues and high positive correlation between the absolute quantitation values of fresh and FFPE proteins. In conclusion, RapiGest extraction of FFPE tissues delivers a proteome that closely resembles the fresh frozen proteome and should be preferred over FASP in biomarker and quantification studies. SIGNIFICANCE: Here we analyzed the performance of two sample preparation methods for shotgun proteomic analysis of FFPE tissues to give a comprehensive overview of the obtained proteomes and the resemblance to its matching fresh frozen counterparts. These findings give us better understanding towards competent proteomics analysis of FFPE tissues. It is hoped that it will encourage further assessments of available protocols before establishing the most effective protocol for shotgun proteomic FFPE tissue analysis.

摘要

在过去的二十年中,福尔马林固定石蜡包埋(FFPE)样本的蛋白质组学有了显著的进展,但有许多协议,很少有研究直接比较它们。对于 shotgun 蛋白质组学分析,没有最有效的协议共识。我们比较了两种非标记数据独立 LC-MS/MS 采集方法,即用 RapiGest 和 Filter Aided Sample Preparation (FASP) 对储存了 7 年并与新鲜冷冻样本相匹配的 FFPE 前列腺组织进行的溶液内消化。RapiGest 鉴定的蛋白质数量多于 FASP,来自新鲜和 FFPE 组织的蛋白质数量几乎相同,重叠率为 69%,高 MW 蛋白质保存良好,没有等电点偏差,技术重复性更好。另一方面,FASP 在 FFPE 中的蛋白质鉴定比在新鲜组织中少 20%,重叠率为 64-69%,消耗了 >70 kDa 的蛋白质,在酸性和中性范围内效率较低,技术重复性也较低。两种方法均显示出高度相似的亚细胞区室分布,FFPE 和新鲜组织中提取的独特肽的百分比非常相似,并且新鲜和 FFPE 蛋白质的绝对定量值之间存在高度正相关。总之,RapiGest 提取 FFPE 组织的蛋白质组与新鲜冷冻蛋白质组非常相似,在生物标志物和定量研究中应优先于 FASP。意义:在这里,我们分析了两种用于 FFPE 组织 shotgun 蛋白质组学分析的样品制备方法的性能,以全面概述获得的蛋白质组及其与匹配的新鲜冷冻对应物的相似性。这些发现使我们对 FFPE 组织的蛋白质组学分析有了更好的理解。希望它能鼓励在确定 shotgun 蛋白质组 FFPE 组织分析的最有效协议之前,对现有协议进行进一步评估。

相似文献

1
Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues.
J Proteomics. 2021 Mar 20;235:104117. doi: 10.1016/j.jprot.2021.104117. Epub 2021 Jan 14.
3
Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer.
J Proteome Res. 2020 Jul 2;19(7):2631-2642. doi: 10.1021/acs.jproteome.9b00587. Epub 2019 Nov 18.
4
Comparison of two FFPE preparation methods using label-free shotgun proteomics: Application to tissues of diverticulitis patients.
J Proteomics. 2015 Jan 1;112:250-61. doi: 10.1016/j.jprot.2014.08.013. Epub 2014 Sep 10.
5
7
Comparison of different digestion methods for proteomic analysis of isolated cells and FFPE tissue samples.
Talanta. 2021 Oct 1;233:122568. doi: 10.1016/j.talanta.2021.122568. Epub 2021 May 28.
9
Protein extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles by mass spectrometry.
J Histochem Cytochem. 2009 Sep;57(9):849-60. doi: 10.1369/jhc.2009.953497. Epub 2009 May 26.

引用本文的文献

1
The effect of storage time and temperature on the proteomic analysis of FFPE tissue sections.
Clin Proteomics. 2025 Feb 5;22(1):5. doi: 10.1186/s12014-025-09529-5.
8
Bottom-Up Proteomics: Advancements in Sample Preparation.
Int J Mol Sci. 2023 Mar 10;24(6):5350. doi: 10.3390/ijms24065350.
10
Comparative proteomic analysis of children FSGS FFPE tissues.
BMC Pediatr. 2022 Dec 12;22(1):707. doi: 10.1186/s12887-022-03764-7.

本文引用的文献

2
GOnet: a tool for interactive Gene Ontology analysis.
BMC Bioinformatics. 2018 Dec 7;19(1):470. doi: 10.1186/s12859-018-2533-3.
3
Clinical potential of mass spectrometry-based proteogenomics.
Nat Rev Clin Oncol. 2019 Apr;16(4):256-268. doi: 10.1038/s41571-018-0135-7.
4
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
5
Proteomics biomarkers for solid tumors: Current status and future prospects.
Mass Spectrom Rev. 2019 Jan;38(1):49-78. doi: 10.1002/mas.21572. Epub 2018 Jun 11.
7
A modified FASP protocol for high-throughput preparation of protein samples for mass spectrometry.
PLoS One. 2017 Jul 27;12(7):e0175967. doi: 10.1371/journal.pone.0175967. eCollection 2017.
8
The neXtProt peptide uniqueness checker: a tool for the proteomics community.
Bioinformatics. 2017 Nov 1;33(21):3471-3472. doi: 10.1093/bioinformatics/btx318.
9
Optimized Protocol for Quantitative Multiple Reaction Monitoring-Based Proteomic Analysis of Formalin-Fixed, Paraffin-Embedded Tissues.
J Proteome Res. 2016 Aug 5;15(8):2717-28. doi: 10.1021/acs.jproteome.6b00245. Epub 2016 Jul 27.
10
Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.
Nat Protoc. 2016 Apr;11(4):795-812. doi: 10.1038/nprot.2016.042. Epub 2016 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验