Department of Clinical Physics, Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands.
Department of Clinical Physics, Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands.
Eur J Radiol. 2021 Mar;136:109526. doi: 10.1016/j.ejrad.2021.109526. Epub 2021 Jan 8.
To study the effect of different reconstruction parameter settings on the performance of a commercially available deep learning based pulmonary nodule CAD system.
We performed a retrospective analysis of 24 chest CT scans, reconstructed at 16 different reconstruction settings for two different iterative reconstruction algorithms (SAFIRE and ADMIRE) varying in slice thickness, kernel size and iterative reconstruction level strength using a commercially available deep learning pulmonary nodule CAD system. The DL-CAD software was evaluated at 25 different sensitivity threshold settings and nodules detected by the DL-CAD software were matched against a reference standard based on the consensus reading of three radiologists.
A total of 384 CT reconstructions was analysed from 24 patients, resulting in a total of 5786 found nodules. We matched the detected nodules against the reference standard, defined by a team of thoracic radiologists, and showed a gradual drop in recall, and an improvement in precision when the iterative strength levels were increased for a constant kernel size. The optimal DL-CAD threshold setting for use in our clinical workflow was found to be 0.88 with an F of 0.73 ± 0.053.
The DL-CAD system behaves differently on IR data than on FBP data, there is a gradual drop in recall, and growth in precision when the iterative strength levels are increased. As a result, caution should be taken when implementing deep learning software in a hospital with multiple CT scanners and different reconstruction protocols. To the best of our knowledge, this is the first study that demonstrates this result from a DL-CAD system on clinical data.
研究不同重建参数设置对商业上可用的基于深度学习的肺结节 CAD 系统性能的影响。
我们对 24 例胸部 CT 扫描进行了回顾性分析,这些扫描使用两种不同的迭代重建算法(SAFIRE 和 ADMIRE)在 16 种不同的重建设置下进行重建,这些设置在层厚、核大小和迭代重建水平强度方面有所不同,使用的是商业上可用的深度学习肺结节 CAD 系统。该 DL-CAD 软件在 25 种不同的灵敏度阈值设置下进行了评估,并且通过 DL-CAD 软件检测到的结节与基于三位放射科医生共识阅读的参考标准相匹配。
对 24 名患者的 384 次 CT 重建进行了分析,总共发现了 5786 个结节。我们将检测到的结节与由胸部放射科医生团队定义的参考标准相匹配,并显示出当迭代强度水平在保持核大小不变的情况下增加时,召回率逐渐下降,而精度提高。我们在临床工作流程中发现的最佳 DL-CAD 阈值设置为 0.88,F 值为 0.73±0.053。
DL-CAD 系统在 IR 数据上的表现与 FBP 数据不同,随着迭代强度水平的增加,召回率逐渐下降,精度提高。因此,在具有多台 CT 扫描仪和不同重建协议的医院中实施深度学习软件时应谨慎。据我们所知,这是第一项在临床数据中证明这一结果的基于深度学习的 CAD 系统研究。