Kim Nana, Bolt Daniel M
University of Wisconsin-Madison, Madison, WI, USA.
Educ Psychol Meas. 2021 Feb;81(1):131-154. doi: 10.1177/0013164420913915. Epub 2020 Apr 27.
This paper presents a mixture item response tree (IRTree) model for extreme response style. Unlike traditional applications of single IRTree models, a mixture approach provides a way of representing the mixture of respondents following different underlying response processes (between individuals), as well as the uncertainty present at the individual level (within an individual). Simulation analyses reveal the potential of the mixture approach in identifying subgroups of respondents exhibiting response behavior reflective of different underlying response processes. Application to real data from the Students Like Learning Mathematics (SLM) scale of Trends in International Mathematics and Science Study (TIMSS) 2015 demonstrates the superior comparative fit of the mixture representation, as well as the consequences of applying the mixture on the estimation of content and response style traits. We argue that methodology applied to investigate response styles should attend to the inherent uncertainty of response style influence due to the likely influence of both response styles and the content trait on the selection of extreme response categories.
本文提出了一种针对极端反应风格的混合项目反应树(IRTree)模型。与单一IRTree模型的传统应用不同,混合方法提供了一种方式来表示遵循不同潜在反应过程的受访者混合情况(个体之间),以及个体层面存在的不确定性(个体内部)。模拟分析揭示了混合方法在识别表现出反映不同潜在反应过程的反应行为的受访者亚组方面的潜力。将其应用于2015年国际数学和科学趋势研究(TIMSS)的学生喜欢学习数学(SLM)量表的真实数据,证明了混合表示的卓越比较拟合,以及应用混合方法对内容和反应风格特征估计的影响。我们认为,由于反应风格和内容特征都可能对极端反应类别的选择产生影响,用于研究反应风格的方法应关注反应风格影响的内在不确定性。