Mejía Morales Julián, Hammarström Björn, Lippi Gian Luca, Vassalli Massimo, Glynne-Jones Peter
Institut de Physique de Nice, Université Côte d'Azur, CNRS, 06560 Valbonne, France.
James Watt School of Engineering, University of Glasgow, G12 8LT Glasgow, United Kingdom.
Biomicrofluidics. 2021 Jan 5;15(1):014102. doi: 10.1063/5.0036585. eCollection 2021 Jan.
A low-cost device for registration-free quantitative phase microscopy (QPM) based on the transport of intensity equation of cells in continuous flow is presented. The method uses acoustic focusing to align cells into a single plane where all cells move at a constant speed. The acoustic focusing plane is tilted with respect to the microscope's focal plane in order to obtain cell images at multiple focal positions. As the cells are displaced at constant speed, phase maps can be generated without the need to segment and register individual objects. The proposed inclined geometry allows for the acquisition of a vertical stack without the need for any moving part, and it enables a cost-effective and robust implementation of QPM. The suitability of the solution for biological imaging is tested on blood samples, demonstrating the ability to recover the phase map of single red blood cells flowing through the microchip.
提出了一种基于连续流动中细胞强度传输方程的低成本免配准定量相显微镜(QPM)设备。该方法利用声聚焦将细胞排列到单个平面,所有细胞在该平面以恒定速度移动。声聚焦平面相对于显微镜焦平面倾斜,以便在多个焦平面位置获取细胞图像。由于细胞以恒定速度位移,无需分割和配准单个物体即可生成相位图。所提出的倾斜几何结构无需任何移动部件即可获取垂直堆栈,并且能够以具有成本效益且稳健的方式实现QPM。在血液样本上测试了该解决方案对生物成像的适用性,证明了其能够恢复流经微芯片的单个红细胞的相位图。