Jung Jae Won, Lee Choonik, Mosher Elizabeth G, Mille Matthew M, Yeom Yeon Soo, Jones Elizabeth C, Choi Minsoo, Lee Choonsik
Department of Physics, East Carolina University, Greenville, NC 27858, USA.
Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
Phys Imaging Radiat Oncol. 2019 Dec 5;12:44-48. doi: 10.1016/j.phro.2019.11.007. eCollection 2019 Oct.
We developed an automatic method to segment cardiac substructures given a radiotherapy planning CT images to support epidemiological studies or clinical trials looking at cardiac disease endpoints after radiotherapy.
We used a most-similar atlas selection algorithm and 3D deformation combined with 30 detailed cardiac atlases. We cross-validated our method within the atlas library by evaluating geometric comparison metrics and by comparing cardiac doses for simulated breast radiotherapy between manual and automatic contours. We analyzed the impact of the number of cardiac atlas in the library and the use of manual guide points on the performance of our method.
The Dice Similarity Coefficients from the cross-validation reached up to 97% (whole heart) and 80% (chambers). The Average Surface Distance for the coronary arteries was less than 10.3 mm on average, with the best agreement (7.3 mm) in the left anterior descending artery (LAD). The dose comparison for simulated breast radiotherapy showed differences less than 0.06 Gy for the whole heart and atria, and 0.3 Gy for the ventricles. For the coronary arteries, the dose differences were 2.3 Gy (LAD) and 0.3 Gy (other arteries). The sensitivity analysis showed no notable improvement beyond ten atlases and the manual guide points does not significantly improve performance.
We developed an automated method to contour cardiac substructures for radiotherapy CTs. When combined with accurate dose calculation techniques, our method should be useful for cardiac dose reconstruction of a large number of patients in epidemiological studies or clinical trials.
我们开发了一种自动方法,用于在放射治疗计划CT图像上分割心脏亚结构,以支持针对放射治疗后心脏疾病终点的流行病学研究或临床试验。
我们使用了最相似图谱选择算法和3D变形,并结合了30个详细的心脏图谱。我们通过评估几何比较指标以及比较手动和自动轮廓下模拟乳腺放射治疗的心脏剂量,在图谱库中对我们的方法进行了交叉验证。我们分析了图谱库中心脏图谱数量以及使用手动引导点对我们方法性能的影响。
交叉验证得到的骰子相似系数在全心脏方面高达97%,在心室方面为80%。冠状动脉的平均表面距离平均小于10.3毫米,在左前降支(LAD)中一致性最佳(7.3毫米)。模拟乳腺放射治疗的剂量比较显示,全心脏和心房的剂量差异小于0.06 Gy,心室的剂量差异小于0.3 Gy。对于冠状动脉,剂量差异在LAD为2.3 Gy,其他动脉为0.3 Gy。敏感性分析表明,超过十个图谱后没有显著改善,并且手动引导点并未显著提高性能。
我们开发了一种用于放射治疗CT图像中勾勒心脏亚结构轮廓的自动化方法。当与精确的剂量计算技术相结合时,我们的方法应有助于在流行病学研究或临床试验中对大量患者进行心脏剂量重建。