Suppr超能文献

用于低剂量CT成像的双残差卷积神经网络(DRCNN)

Dual residual convolutional neural network (DRCNN) for low-dose CT imaging.

作者信息

Feng Zhiwei, Cai Ailong, Wang Yizhong, Li Lei, Tong Li, Yan Bin

机构信息

Zhong Yuan Network Security Research Institute, Zhengzhou University, Zhengzhou, Henan, China.

Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategy Support Force Information Engineering University, Zhengzhou, Henan, China.

出版信息

J Xray Sci Technol. 2021;29(1):91-109. doi: 10.3233/XST-200777.

Abstract

The excessive radiation doses in the application of computed tomography (CT) technology pose a threat to the health of patients. However, applying a low radiation dose in CT can result in severe artifacts and noise in the captured images, thus affecting the diagnosis. Therefore, in this study, we investigate a dual residual convolution neural network (DRCNN) for low-dose CT (LDCT) imaging, whereby the CT images are reconstructed directly from the sinogram by integrating analytical domain transformations, thus reducing the loss of projection information. With this new framework, feature extraction is performed simultaneously on both the sinogram-domain sub-net and the image-domain sub-net, which utilize the residual shortcut networks and play a complementary role in suppressing the projection noise and reducing image error. This new DRCNN approach helps not only decrease the sinogram noise but also preserve significant structural information. The experimental results of simulated and real projection data demonstrate that our DRCNN achieve superior performance over other state-of-art methods in terms of visual inspection and quantitative metrics. For example, comparing with RED-CNN and DP-ResNet, the value of PSNR using our DRCNN is improved by nearly 3 dB and 1 dB, respectively.

摘要

计算机断层扫描(CT)技术应用中的过量辐射剂量对患者健康构成威胁。然而,在CT中应用低辐射剂量会导致所采集图像中出现严重伪影和噪声,从而影响诊断。因此,在本研究中,我们研究了一种用于低剂量CT(LDCT)成像的双残差卷积神经网络(DRCNN),通过整合解析域变换直接从正弦图重建CT图像,从而减少投影信息的损失。借助这个新框架,在正弦图域子网和图像域子网中同时进行特征提取,这两个子网利用残差捷径网络,在抑制投影噪声和减少图像误差方面发挥互补作用。这种新的DRCNN方法不仅有助于降低正弦图噪声,还能保留重要的结构信息。模拟和真实投影数据的实验结果表明,在视觉检查和定量指标方面,我们的DRCNN比其他现有方法具有更优的性能。例如,与RED-CNN和DP-ResNet相比,使用我们的DRCNN时PSNR值分别提高了近3 dB和1 dB。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验