Suppr超能文献

基于解剖学引导的神经影像异常的模态无关分割

Anatomy-guided, modality-agnostic segmentation of neuroimaging abnormalities.

作者信息

Lteif Diala, Appapogu Divya, Bargal Sarah A, Plummer Bryan A, Kolachalama Vijaya B

机构信息

Department of Computer Science, Boston University, Boston, MA, USA.

Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

出版信息

medRxiv. 2025 Apr 30:2025.04.29.25326682. doi: 10.1101/2025.04.29.25326682.

Abstract

Magnetic resonance imaging (MRI) offers multiple sequences that provide complementary views of brain anatomy and pathology. However, real-world datasets often exhibit variability in sequence availability due to clinical and logistical constraints. This variability complicates radiological interpretation and limits the generalizability of machine learning models that depend on consistent multimodal input. In this work, we propose an anatomy-guided and modality-agnostic framework for assessing disease-related abnormalities in brain MRI, leveraging structural context to enhance robustness across diverse input configurations. We introduce a novel augmentation strategy, Region ModalMix, which integrates anatomical priors during training to improve model performance when some modalities are absent or variable. We conducted extensive experiments on brain tumor segmentation using the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2020 dataset (n=369). The results demonstrate that our proposed framework outperforms state-of-the-art methods on various missing modality conditions, especially by an average 9.68 mm reduction in 95 percentile Hausdorff Distance and a 1.36% improvement in Dice Similarity Coefficient over baseline models with only one available modailty. Our method is model-agnostic, training-compatible, and broadly applicable to multi-modal neuroimaging pipelines, enabling more reliable abnormality detection in settings with heterogeneous data availability.

摘要

磁共振成像(MRI)提供了多种序列,可对脑解剖结构和病理情况进行互补性观察。然而,由于临床和后勤方面的限制,实际数据集的序列可用性往往存在差异。这种差异使放射学解释变得复杂,并限制了依赖一致多模态输入的机器学习模型的通用性。在这项工作中,我们提出了一个基于解剖学引导且与模态无关的框架,用于评估脑MRI中与疾病相关的异常情况,利用结构上下文来增强在不同输入配置下的鲁棒性。我们引入了一种新颖的增强策略——区域模态混合(Region ModalMix),在训练过程中整合解剖学先验知识,以在某些模态缺失或变化时提高模型性能。我们使用多模态脑肿瘤分割挑战赛(BraTS)2020数据集(n = 369)对脑肿瘤分割进行了广泛实验。结果表明,我们提出的框架在各种缺失模态条件下均优于现有方法,特别是与仅有一个可用模态的基线模型相比,在95%分位数豪斯多夫距离上平均减少了9.68毫米,骰子相似系数提高了1.36%。我们的方法与模型无关,与训练兼容,广泛适用于多模态神经成像管道,能够在数据可用性各异的情况下实现更可靠的异常检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/537b/12060938/f25d08e3b34c/nihpp-2025.04.29.25326682v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验