Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32827, USA.
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
Nat Commun. 2021 Jan 18;12(1):431. doi: 10.1038/s41467-020-20267-0.
Neuronal exocytosis facilitates the propagation of information through the nervous system pertaining to bodily function, memory, and emotions. Using amperometry, the sub-millisecond dynamics of exocytosis can be monitored and the modulation of exocytosis due to drug treatment or neurodegenerative diseases can be studied. Traditional single-cell amperometry is a powerful technique for studying the molecular mechanisms of exocytosis, but it is both costly and labor-intensive to accumulate statistically significant data. To surmount these limitations, we have developed a silicon-based electrode array with 1024 on-chip electrodes that measures oxidative signal in 0.1 millisecond intervals. Using the developed device, we are able to capture the modulation of exocytosis due to Parkinson's disease treatment (L-Dopa), with statistical significance, within 30 total minutes of recording. The validation study proves our device's capability to accelerate the study of many pharmaceutical treatments for various neurodegenerative disorders that affect neurotransmitter secretion to a matter of minutes.
神经元胞吐作用促进了与身体机能、记忆和情绪相关的信息在神经系统中的传递。通过安培法,可以监测胞吐作用的亚毫秒级动力学,并且可以研究药物治疗或神经退行性疾病引起的胞吐作用的调制。传统的单细胞安培法是研究胞吐作用分子机制的有力技术,但要积累具有统计学意义的数据既昂贵又耗时。为了克服这些限制,我们开发了一种基于硅的电极阵列,该阵列具有 1024 个片上电极,可以在 0.1 毫秒的时间间隔内测量氧化信号。使用开发的设备,我们能够在 30 分钟的总记录时间内捕捉到帕金森病治疗(左旋多巴)引起的胞吐作用的调制,具有统计学意义。验证研究证明了我们的设备能够加速对多种神经退行性疾病的药物治疗的研究,这些疾病会影响神经递质的分泌,而我们的设备可以将其加速到几分钟内。