Suppr超能文献

胰岛素储存池生物发生和维持的正常和缺陷途径。

Normal and defective pathways in biogenesis and maintenance of the insulin storage pool.

机构信息

Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.

Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA.

出版信息

J Clin Invest. 2021 Jan 19;131(2). doi: 10.1172/JCI142240.

Abstract

Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.

摘要

基础胰岛素和葡萄糖刺激的胰岛素释放主要通过胰岛β细胞胰岛素分泌颗粒的胞吐作用发生,两者均有助于维持血糖正常。胰岛素分泌β细胞的丧失伴随着异常的葡萄糖耐量,可能涉及胰岛素储备的简单耗竭(通过免疫染色,表现为β细胞特征的丧失),或β细胞去分化,或β细胞死亡。虽然各种感应和信号缺陷会导致胰岛素分泌减少,但人们对生物合成产生和维持总胰岛素颗粒储存池不足导致的糖尿病风险关注较少。这篇综述概述了胰岛素的生物合成,从前胰岛素原 mRNA(翻译和易位到内质网)、胰岛素原折叠和从内质网输出,以及通过高尔基体复合物运输到分泌颗粒,转化为胰岛素和最终的激素储存开始。所有这些步骤都是生成和维持总胰岛素颗粒库所必需的,这些步骤中的任何缺陷都可能弱或强地破坏血糖控制。上述考虑显然与 2 型糖尿病和某些形式的单基因糖尿病的发病机制有关;可以想象,这些概念中的一些可能也与 1 型糖尿病的β细胞衰竭有关。

相似文献

1
2
Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells.
Vitam Horm. 2014;95:35-62. doi: 10.1016/B978-0-12-800174-5.00002-8.
3
Biosynthesis, structure, and folding of the insulin precursor protein.
Diabetes Obes Metab. 2018 Sep;20 Suppl 2(Suppl 2):28-50. doi: 10.1111/dom.13378.
5
Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes.
Mol Aspects Med. 2015 Apr;42:105-18. doi: 10.1016/j.mam.2015.01.001. Epub 2015 Jan 8.
6
COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.
Mol Endocrinol. 2015 Aug;29(8):1156-69. doi: 10.1210/me.2015-1012. Epub 2015 Jun 17.
7
Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.
PLoS One. 2012;7(4):e35098. doi: 10.1371/journal.pone.0035098. Epub 2012 Apr 3.
8
A busy cell--endoplasmic reticulum stress in the pancreatic beta-cell.
Mol Cell Endocrinol. 2007 Oct 15;277(1-2):1-5. doi: 10.1016/j.mce.2007.06.006. Epub 2007 Jul 10.
10
Endoplasmic Reticulum Chaperone Glucose-Regulated Protein 94 Is Essential for Proinsulin Handling.
Diabetes. 2019 Apr;68(4):747-760. doi: 10.2337/db18-0671. Epub 2019 Jan 22.

引用本文的文献

2
Pancreatic β-cell Dysfunction and Diabetes.
Juntendo Med J. 2025 May 9;71(3):158-165. doi: 10.14789/ejmj.JMJ25-0001-R. eCollection 2025.
3
SEL1L-HRD1-mediated ERAD in mammals.
Nat Cell Biol. 2025 Jun 25. doi: 10.1038/s41556-025-01690-1.
4
Diabetes mellitus and the key role of endoplasmic reticulum stress in pancreatic β cells.
Nat Rev Endocrinol. 2025 Jun 4. doi: 10.1038/s41574-025-01129-5.
5
Trapα deficiency impairs the early events of insulin biosynthesis and glucose homeostasis.
J Clin Invest. 2025 May 20;135(14). doi: 10.1172/JCI179845. eCollection 2025 Jul 15.
6
Wolfram syndrome 2 gene (CISD2) deficiency disrupts Ca-mediated insulin secretion in β-cells.
Mol Metab. 2025 Jun;96:102140. doi: 10.1016/j.molmet.2025.102140. Epub 2025 Apr 4.
7
Molecular puzzle of insulin: structural assembly pathways and their role in diabetes.
Front Cell Dev Biol. 2025 Feb 20;13:1502469. doi: 10.3389/fcell.2025.1502469. eCollection 2025.
8
Renalase inhibition defends against acute and chronic β cell stress by regulating cell metabolism.
Mol Metab. 2025 May;95:102115. doi: 10.1016/j.molmet.2025.102115. Epub 2025 Feb 21.
9
Aggregated proinsulin in pancreatic β-cells is degraded by the autophagy pathway.
J Biol Chem. 2025 Mar;301(3):108257. doi: 10.1016/j.jbc.2025.108257. Epub 2025 Feb 3.
10
Role of Sec61α2 Translocon in Insulin Biosynthesis.
Diabetes. 2024 Dec 1;73(12):2034-2044. doi: 10.2337/db24-0115.

本文引用的文献

1
The making of insulin in health and disease.
Diabetologia. 2020 Oct;63(10):1981-1989. doi: 10.1007/s00125-020-05192-7. Epub 2020 Sep 7.
4
A fluorescent timer reporter enables sorting of insulin secretory granules by age.
J Biol Chem. 2020 Jul 3;295(27):8901-8911. doi: 10.1074/jbc.RA120.012432. Epub 2020 Apr 27.
5
Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite.
Am J Physiol Regul Integr Comp Physiol. 2020 May 1;318(5):R1004-R1013. doi: 10.1152/ajpregu.00011.2020. Epub 2020 Apr 15.
8
The inducible β5i proteasome subunit contributes to proinsulin degradation in GRP94-deficient β-cells and is overexpressed in type 2 diabetes pancreatic islets.
Am J Physiol Endocrinol Metab. 2020 Jun 1;318(6):E892-E900. doi: 10.1152/ajpendo.00372.2019. Epub 2020 Apr 7.
9
Sel1L-Hrd1 ER-associated degradation maintains β cell identity via TGF-β signaling.
J Clin Invest. 2020 Jul 1;130(7):3499-3510. doi: 10.1172/JCI134874.
10
Role of Proinsulin Self-Association in Mutant Gene-Induced Diabetes of Youth.
Diabetes. 2020 May;69(5):954-964. doi: 10.2337/db19-1106. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验