Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland.
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Sci Rep. 2021 Jan 19;11(1):1817. doi: 10.1038/s41598-021-81448-5.
Monitoring of human tissue hemodynamics is invaluable in clinics as the proper blood flow regulates cellular-level metabolism. Time-domain diffuse correlation spectroscopy (TD-DCS) enables noninvasive blood flow measurements by analyzing temporal intensity fluctuations of the scattered light. With time-of-flight (TOF) resolution, TD-DCS should decompose the blood flow at different sample depths. For example, in the human head, it allows us to distinguish blood flows in the scalp, skull, or cortex. However, the tissues are typically polydisperse. So photons with a similar TOF can be scattered from structures that move at different speeds. Here, we introduce a novel approach that takes this problem into account and allows us to quantify the TOF-resolved blood flow of human tissue accurately. We apply this approach to monitor the blood flow index in the human forearm in vivo during the cuff occlusion challenge. We detect depth-dependent reactive hyperemia. Finally, we applied a controllable pressure to the human forehead in vivo to demonstrate that our approach can separate superficial from the deep blood flow. Our results can be beneficial for neuroimaging sensing applications that require short interoptode separation.
监测人体组织的血液动力学在临床上是非常重要的,因为适当的血流可以调节细胞水平的新陈代谢。时域漫反射相关光谱(TD-DCS)通过分析散射光的时间强度波动来实现非侵入式的血流测量。具有飞行时间(TOF)分辨率,TD-DCS 应该可以分解不同样本深度的血流。例如,在人体头部,可以区分头皮、颅骨或皮层中的血流。然而,组织通常是多分散的。因此,具有相似 TOF 的光子可能来自以不同速度运动的结构。在这里,我们介绍了一种新方法,可以解决这个问题,并能够准确地量化组织的 TOF 分辨血流。我们将该方法应用于在人体前臂的袖带阻塞挑战过程中监测活体的血流指数。我们检测到深度依赖的反应性充血。最后,我们在人体额头上施加可控压力,以证明我们的方法可以将浅层和深层血流分开。我们的研究结果可以为需要短的光程间隔的神经成像传感应用提供帮助。