Alotibi Satam, Hickey Bryan J, Teobaldi Gilberto, Ali Mannan, Barker Joseph, Poli Emiliano, O'Regan David D, Ramasse Quentin, Burnell Gavin, Patchett James, Ciccarelli Chiara, Alyami Mohammed, Moorsom Timothy, Cespedes Oscar
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.
Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0QX, U.K.
ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5228-5234. doi: 10.1021/acsami.0c19403. Epub 2021 Jan 20.
5d metals are used in electronics because of their high spin-orbit coupling (SOC) leading to efficient spin-electric conversion. When C is grown on a metal, the electronic structure is altered due to hybridization and charge transfer. In this work, we measure the spin Hall magnetoresistance for Pt/C and Ta/C, finding that they are up to a factor of 6 higher than those for pristine metals, indicating a 20-60% increase in the spin Hall angle. At low fields of 1-30 mT, the presence of C increased the anisotropic magnetoresistance by up to 700%. Our measurements are supported by noncollinear density functional theory calculations, which predict a significant SOC enhancement by C that penetrates through the Pt layer, concomitant with trends in the magnetic moment of transport electrons acquired via SOC and symmetry breaking. The charge transfer and hybridization between the metal and C can be controlled by gating, so our results indicate the possibility of dynamically modifying the SOC of thin metals using molecular layers. This could be exploited in spin-transfer torque memories and pure spin current circuits.
5d 金属因其高自旋轨道耦合(SOC)导致高效的自旋 - 电转换而被用于电子学领域。当碳生长在金属上时,由于杂化和电荷转移,电子结构会发生改变。在这项工作中,我们测量了 Pt/C 和 Ta/C 的自旋霍尔磁电阻,发现它们比原始金属的自旋霍尔磁电阻高出 6 倍,这表明自旋霍尔角增加了 20 - 60%。在 1 - 30 mT 的低磁场下,碳的存在使各向异性磁电阻增加了高达 700%。我们的测量结果得到了非共线密度泛函理论计算的支持,该计算预测碳会显著增强穿透 Pt 层的 SOC,这与通过 SOC 和对称性破缺获得的传导电子磁矩的趋势相一致。金属与碳之间的电荷转移和杂化可以通过门控来控制,所以我们的结果表明利用分子层动态调节薄金属的 SOC 是有可能的。这可应用于自旋转移矩存储器和纯自旋电流电路。