Suppr超能文献

利用药物卷积神经网络预测药物不良反应。

Prediction of adverse drug reactions using drug convolutional neural networks.

机构信息

Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai 600127, India.

Data Foundry, Bangalore, India.

出版信息

J Bioinform Comput Biol. 2021 Feb;19(1):2050046. doi: 10.1142/S0219720020500468. Epub 2021 Jan 20.

Abstract

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.

摘要

药物不良反应(ADR)的预测一直是药物警戒学的一个重要方面,因为它对制药行业有影响。将一种新药引入市场的标准程序涉及大量的临床试验和测试。这是一个繁琐且耗时的过程,还涉及大量的资金。药物的更快批准有助于那些需要药物的患者。药物不良反应的预测有助于加快上述过程。所涉及的挑战是缺乏现有的负面数据,并且只能从化学结构预测 ADR。尽管已经有许多模型可用于预测 ADR,但大多数模型除了药物的化学结构外,还使用生物活性标识符、化学和物理特性。但是,对于大多数要测试的新药,只有化学结构是可用的。仅使用化学结构预测 ADR 的现有模型的性能效率不高。因此,本文提出了一种仅从化学结构预测 ADR 的有效方法。该方法为每种 ADR 都涉及一个单独的模型,使其成为一个二进制分类问题。本文提出了一种名为药物卷积神经网络(DCNN)的新型 CNN 模型,用于使用药物的化学结构预测 ADR。使用准确性、召回率、精度、特异性、F1 分数、AUROC 和 MCC 等指标来衡量性能。在所提出的 DCNN 模型在 SIDER4.1 数据库上的表现优于竞争模型的所有指标。对 COVID-19 推荐药物进行了案例研究,所提出的模型预测的 ADR 与使用传统方法的医疗专业人员观察到的结果非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验