Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
Methods Mol Biol. 2021;2216:637-653. doi: 10.1007/978-1-0716-0978-1_38.
Here we present an analysis protocol for dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data of the kidneys. It covers comprehensive steps to facilitate signal to contrast agent concentration mapping via T mapping and the calculation of renal perfusion and filtration parametric maps using model-free approaches, model free analysis using deconvolution, the Toft's model and a Bayesian approach.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
这里我们提出了一种用于肾脏动态对比增强磁共振成像(DCE-MRI)数据的分析方案。它涵盖了通过 T 映射实现信号到对比剂浓度映射以及使用无模型方法、无模型分析使用解卷积、Toft 模型和贝叶斯方法计算肾灌注和滤过参数图的综合步骤。这一章基于 COST 行动 PARENCHIMA 的工作,这是一个由欧洲科学技术合作组织(COST)计划资助的社区驱动网络,旨在提高肾 MRI 生物标志物的可重复性和标准化。本分析方案章节由另外两章补充,描述了基本概念和实验过程。