Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Metab Eng. 2021 Mar;64:41-51. doi: 10.1016/j.ymben.2021.01.004. Epub 2021 Jan 19.
The functionalization of terpenes using cytochrome P450 enzymes is a versatile route to the production of useful derivatives that can be further converted to value-added products. Many terpenes are hydrophobic and volatile making their availability as a substrate for P450 enzymes significantly limited during microbial production. In this study, we developed a strategy to improve the accessibility of terpene molecules for the P450 reaction by linking terpene synthase and P450 together. As a model system, fusion proteins of 1,8-cineole synthase (CS) and P450 were investigated and it showed an improved hydroxylation of the monoterpenoid 1,8-cineole up to 5.4-fold. Structural analysis of the CS-P450 fusion proteins by SEC-SAXS indicated a dimer formation with preferred orientations of the active sites of the two domains. We also applied the enzyme fusion strategy to the oxidation of a sesquiterpene epi-isozizaene and the fusion enzymes significantly improved albaflavenol production in engineered E. coli. From the analysis of positive and negative examples of the fusion strategy, we proposed key factors in structure-based prediction and evaluation of fusion enzymes. Developing fusion enzymes for terpene synthase and P450 presents an efficient strategy toward oxidation of hydrophobic terpene compounds. This strategy could be widely applicable to improve the biosynthetic titer of the functionalized products from hydrophobic terpene intermediates.
利用细胞色素 P450 酶对萜类化合物进行功能化是生产有用衍生物的一种多功能途径,这些衍生物可以进一步转化为增值产品。许多萜类化合物具有疏水性和挥发性,使得它们在微生物生产过程中作为 P450 酶的底物的可用性受到显著限制。在这项研究中,我们开发了一种通过将萜烯合酶和 P450 连接在一起来提高萜烯分子对 P450 反应可及性的策略。作为模型系统,研究了 1,8-桉叶素合酶 (CS) 和 P450 的融合蛋白,结果表明,单萜 1,8-桉叶素的羟化反应提高了 5.4 倍。通过 SEC-SAXS 对 CS-P450 融合蛋白的结构分析表明,两个结构域的活性位点具有优先取向的二聚体形成。我们还将酶融合策略应用于倍半萜 epi-isozizaene 的氧化,融合酶显著提高了工程大肠杆菌中 albaflavenol 的产量。通过对融合策略的正反例进行分析,我们提出了基于结构的预测和融合酶评估的关键因素。开发萜烯合酶和 P450 的融合酶为氧化疏水性萜类化合物提供了一种有效的策略。该策略可广泛应用于提高疏水萜类中间体功能化产物的生物合成产率。