Suppr超能文献

人工智能能否降低乳腺癌筛查中的间隔性癌症率?

Can artificial intelligence reduce the interval cancer rate in mammography screening?

机构信息

Diagnostic Radiology, Department of Translational Medicine, Lund University, Inga Maria Nilssons gata 47, SE-20502, Malmö, Sweden.

Unilabs Mammography Unit, Skåne University Hospital, Jan Waldenströms gata 22, SE-20502, Malmö, Sweden.

出版信息

Eur Radiol. 2021 Aug;31(8):5940-5947. doi: 10.1007/s00330-021-07686-3. Epub 2021 Jan 23.

Abstract

OBJECTIVES

To investigate whether artificial intelligence (AI) can reduce interval cancer in mammography screening.

MATERIALS AND METHODS

Preceding screening mammograms of 429 consecutive women diagnosed with interval cancer in Southern Sweden between 2013 and 2017 were analysed with a deep learning-based AI system. The system assigns a risk score from 1 to 10. Two experienced breast radiologists reviewed and classified the cases in consensus as true negative, minimal signs or false negative and assessed whether the AI system correctly localised the cancer. The potential reduction of interval cancer was calculated at different risk score thresholds corresponding to approximately 10%, 4% and 1% recall rates.

RESULTS

A statistically significant correlation between interval cancer classification groups and AI risk score was observed (p < .0001). AI scored one in three (143/429) interval cancer with risk score 10, of which 67% (96/143) were either classified as minimal signs or false negative. Of these, 58% (83/143) were correctly located by AI, and could therefore potentially be detected at screening with the aid of AI, resulting in a 19.3% (95% CI 15.9-23.4) reduction of interval cancer. At 4% and 1% recall thresholds, the reduction of interval cancer was 11.2% (95% CI 8.5-14.5) and 4.7% (95% CI 3.0-7.1). The corresponding reduction of interval cancer with grave outcome (women who died or with stage IV disease) at risk score 10 was 23% (8/35; 95% CI 12-39).

CONCLUSION

The use of AI in screen reading has the potential to reduce the rate of interval cancer without supplementary screening modalities.

KEY POINTS

• Retrospective study showed that AI detected 19% of interval cancer at the preceding screening exam that in addition showed at least minimal signs of malignancy. Importantly, these were correctly localised by AI, thus obviating supplementary screening modalities. • AI could potentially reduce a proportion of particularly aggressive interval cancers. • There was a correlation between AI risk score and interval cancer classified as true negative, minimal signs or false negative.

摘要

目的

探讨人工智能(AI)能否降低乳腺摄影筛查中的间期癌。

材料与方法

分析了 2013 年至 2017 年期间在瑞典南部被诊断为间期癌的 429 例连续女性的先前筛查乳房 X 线照片,使用基于深度学习的 AI 系统进行分析。该系统从 1 到 10 分配风险评分。两位经验丰富的乳腺放射科医生对病例进行了回顾和共识分类,分为真阴性、最小迹象或假阴性,并评估 AI 系统是否正确定位了癌症。在不同的风险评分阈值下计算了间期癌的潜在减少率,对应于约 10%、4%和 1%的召回率。

结果

观察到间期癌分类组与 AI 风险评分之间存在统计学显著相关性(p<0.0001)。AI 将三分之一(143/429)的间期癌评为 10 分,其中 67%(96/143)被归类为最小迹象或假阴性。在这些病例中,58%(83/143)被 AI 正确定位,因此可能通过 AI 在筛查中检测到,从而使间期癌的发生率降低 19.3%(95%CI 15.9-23.4)。在 4%和 1%的召回阈值下,间期癌的减少率分别为 11.2%(95%CI 8.5-14.5)和 4.7%(95%CI 3.0-7.1)。风险评分 10 时,伴有严重后果(死亡或 IV 期疾病的女性)的间期癌的减少率为 23%(8/35;95%CI 12-39)。

结论

在屏幕阅读中使用 AI 有可能在不增加额外筛查方式的情况下降低间期癌的发生率。

要点

  • 回顾性研究表明,AI 在之前的筛查检查中检测到了 19%的间期癌,这些检查至少显示出最小的恶性迹象。重要的是,这些被 AI 正确定位,因此避免了额外的筛查方式。

  • AI 可能会降低一部分特别侵袭性的间期癌。

  • AI 风险评分与分类为真阴性、最小迹象或假阴性的间期癌之间存在相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705f/8270858/a53cfeea101e/330_2021_7686_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验