Suppr超能文献

深度学习方法的开发,以提高子宫肉瘤病例的诊断准确性。

Development of a deep learning method for improving diagnostic accuracy for uterine sarcoma cases.

机构信息

Department of Obstetrics and Gynecology, Graduate School of Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-Ku, Tokyo, 113-8655, Japan.

SIOS Technology, Inc., Tokyo, Japan.

出版信息

Sci Rep. 2022 Nov 16;12(1):19612. doi: 10.1038/s41598-022-23064-5.

Abstract

Uterine sarcomas have very poor prognoses and are sometimes difficult to distinguish from uterine leiomyomas on preoperative examinations. Herein, we investigated whether deep neural network (DNN) models can improve the accuracy of preoperative MRI-based diagnosis in patients with uterine sarcomas. Fifteen sequences of MRI for patients (uterine sarcoma group: n = 63; uterine leiomyoma: n = 200) were used to train the models. Six radiologists (three specialists, three practitioners) interpreted the same images for validation. The most important individual sequences for diagnosis were axial T2-weighted imaging (T2WI), sagittal T2WI, and diffusion-weighted imaging. These sequences also represented the most accurate combination (accuracy: 91.3%), achieving diagnostic ability comparable to that of specialists (accuracy: 88.3%) and superior to that of practitioners (accuracy: 80.1%). Moreover, radiologists' diagnostic accuracy improved when provided with DNN results (specialists: 89.6%; practitioners: 92.3%). Our DNN models are valuable to improve diagnostic accuracy, especially in filling the gap of clinical skills between interpreters. This method can be a universal model for the use of deep learning in the diagnostic imaging of rare tumors.

摘要

子宫肉瘤的预后非常差,术前检查有时难以与子宫肌瘤相鉴别。在此,我们研究了深度神经网络(DNN)模型是否可以提高基于术前 MRI 对子宫肉瘤患者的诊断准确性。使用了 15 个患者的 MRI 序列(子宫肉瘤组:n=63;子宫平滑肌瘤:n=200)来训练模型。六位放射科医生(三位专家,三位从业者)对相同的图像进行了验证解读。对诊断最重要的个体序列为轴位 T2 加权成像(T2WI)、矢状 T2WI 和弥散加权成像。这些序列也代表了最准确的组合(准确率:91.3%),达到了与专家相当的诊断能力(准确率:88.3%),优于从业者(准确率:80.1%)。此外,当提供 DNN 结果时,放射科医生的诊断准确性提高了(专家:89.6%;从业者:92.3%)。我们的 DNN 模型有助于提高诊断准确性,尤其是在填补解释者之间临床技能差距方面。这种方法可以成为深度学习在罕见肿瘤诊断成像中应用的通用模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1637/9669038/7c15457e6b11/41598_2022_23064_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验