Suppr超能文献

大脑不对称性检测与机器学习分类在早期痴呆症诊断中的应用。

Brain Asymmetry Detection and Machine Learning Classification for Diagnosis of Early Dementia.

机构信息

Department of Computer Science, Birkbeck College, University of London, London WC1E 7HZ, UK.

Birkbeck Knowledge Lab, University of London, London WC1E 7HZ, UK.

出版信息

Sensors (Basel). 2021 Jan 24;21(3):778. doi: 10.3390/s21030778.

Abstract

Early identification of degenerative processes in the human brain is considered essential for providing proper care and treatment. This may involve detecting structural and functional cerebral changes such as changes in the degree of asymmetry between the left and right hemispheres. Changes can be detected by computational algorithms and used for the early diagnosis of dementia and its stages (amnestic early mild cognitive impairment (EMCI), Alzheimer's Disease (AD)), and can help to monitor the progress of the disease. In this vein, the paper proposes a data processing pipeline that can be implemented on commodity hardware. It uses features of brain asymmetries, extracted from MRI of the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, for the analysis of structural changes, and machine learning classification of the pathology. The experiments provide promising results, distinguishing between subjects with normal cognition (NC) and patients with early or progressive dementia. Supervised machine learning algorithms and convolutional neural networks tested are reaching an accuracy of 92.5% and 75.0% for NC vs. EMCI, and 93.0% and 90.5% for NC vs. AD, respectively. The proposed pipeline offers a promising low-cost alternative for the classification of dementia and can be potentially useful to other brain degenerative disorders that are accompanied by changes in the brain asymmetries.

摘要

早期识别人类大脑的退行性变化被认为是提供适当护理和治疗的关键。这可能涉及检测结构和功能上的大脑变化,如左右半球之间不对称程度的变化。可以通过计算算法检测到这些变化,并用于痴呆症及其阶段(遗忘型轻度认知障碍 (EMCI)、阿尔茨海默病 (AD))的早期诊断,并有助于监测疾病的进展。为此,本文提出了一种可以在商用硬件上实现的数据处理管道。它使用从阿尔茨海默病神经影像学倡议 (ADNI) 数据库的 MRI 中提取的大脑不对称特征,进行结构变化分析和病理的机器学习分类。实验提供了有希望的结果,能够区分正常认知 (NC) 受试者和早期或进行性痴呆患者。经过测试的监督机器学习算法和卷积神经网络在 NC 与 EMCI 之间的准确率分别达到 92.5%和 75.0%,在 NC 与 AD 之间的准确率分别达到 93.0%和 90.5%。该提出的管道为痴呆症的分类提供了一种有前途的低成本替代方案,并且可能对其他伴有大脑不对称变化的大脑退行性疾病有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f97/7865614/857ce14456ce/sensors-21-00778-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验