Jacobs Arthur M
Department of Experimental and Neurocognitive Psychology, Freie Universität Berlin, Berlin, Germany.
Center for Cognitive Neuroscience Berlin, Berlin, Germany.
Front Robot AI. 2019 Jul 17;6:53. doi: 10.3389/frobt.2019.00053. eCollection 2019.
Two computational studies provide different sentiment analyses for text segments (e.g., "fearful" passages) and figures (e.g., "Voldemort") from the Harry Potter books (Rowling, 1997, 1998, 1999, 2000, 2003, 2005, 2007) based on a novel simple tool called . The tool uses vector space models together with theory-guided, empirically validated label lists to compute the valence of each word in a text by locating its position in a 2d emotion potential space spanned by the words of the vector space model. After testing the tool's accuracy with empirical data from a neurocognitive poetics study, it was applied to compute emotional figure and personality profiles (inspired by the so-called "big five" personality theory) for main characters from the book series. The results of comparative analyses using different machine-learning classifiers (e.g., AdaBoost, Neural Net) show that performs very well in predicting the emotion potential of text passages. It also produces plausible predictions regarding the emotional and personality profile of fiction characters which are correctly identified on the basis of eight character features, and it achieves a good cross-validation accuracy in classifying 100 figures into "good" vs. "bad" ones. The results are discussed with regard to potential applications of in digital literary, applied reading and neurocognitive poetics studies such as the quantification of the hybrid hero potential of figures.
两项计算研究基于一种名为 的新型简单工具,对《哈利·波特》系列书籍(罗琳,1997年、1998年、1999年、2000年、2003年、2005年、2007年)中的文本片段(如“令人恐惧”的段落)和人物形象(如“伏地魔”)进行了不同的情感分析。该工具使用向量空间模型以及理论指导、经实证验证的标签列表,通过在向量空间模型的词汇所跨越的二维情感势能空间中定位每个单词的位置,来计算文本中每个单词的效价。在用神经认知诗学研究的实证数据测试该工具的准确性之后,它被用于计算该系列书籍主要人物的情感人物形象和性格特征(受所谓“大五”人格理论启发)。使用不同机器学习分类器(如AdaBoost、神经网络)进行的比较分析结果表明, 在预测文本段落的情感势能方面表现非常出色。它还对虚构人物的情感和性格特征做出了合理的预测,这些预测基于八个性格特征被正确识别,并且在将100个角色分为“好”与“坏”两类时,它在交叉验证中取得了良好的准确率。文中讨论了 在数字文学、应用阅读和神经认知诗学研究中的潜在应用结果,例如对人物形象混合英雄潜力的量化。