Suppr超能文献

量化文字之美:神经认知诗学视角

Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective.

作者信息

Jacobs Arthur M

机构信息

Department of Experimental and Neurocognitive Psychology, Freie Universität Berlin, Germany.

Dahlem Institute for Neuroimaging of Emotion, Berlin, Germany.

出版信息

Front Hum Neurosci. 2017 Dec 19;11:622. doi: 10.3389/fnhum.2017.00622. eCollection 2017.

Abstract

In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials.

摘要

在本文中,我希望通过描述预测词语主观美感的程序,为计算文体学和(神经)认知诗学的未来研究奠定基础。通过定量叙事分析(QNA)计算出一组八个暂定的词语特征,并提出了一种用于量化词语美感的新指标。将机器学习算法应用于这些QNA数据表明,决策树家族的分类器能够出色地学会将词语分为优美与丑陋两类。这些结果揭示了与文学阅读中的情感审美过程理论相关的表面和语义特征,并为言语材料的神经美学研究生成了定量预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e221/5742167/d730da0fa296/fnhum-11-00622-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验