Suppr超能文献

基于Hu氏不变矩的膝关节骨关节炎自动检测与分类

Automatic Detection and Classification of Knee Osteoarthritis Using Hu's Invariant Moments.

作者信息

Gornale Shivanand S, Patravali Pooja U, Hiremath Prakash S

机构信息

Department of Computer Science, Rani Channamma University, Belagavi, India.

Department of Master of Computer Application (MCA), Karnataka Lingayat Education Society (KLE) Technological University, Hubballi, India.

出版信息

Front Robot AI. 2020 Nov 16;7:591827. doi: 10.3389/frobt.2020.591827. eCollection 2020.

Abstract

Significant information extraction from the images that are geometrically distorted or transformed is mainstream procedure in image processing. It becomes difficult to retrieve the relevant region when the images get distorted by some geometric deformation. Hu's moments are helpful in extracting information from such distorted images due to their unique invariance property. This work focuses on early detection and gradation of Knee Osteoarthritis utilizing Hu's invariant moments to understand the geometric transformation of the cartilage region in Knee X-ray images. The seven invariant moments are computed for the rotated version of the test image. The results demonstrated are found to be more competitive and promising, which are validated by ortho surgeons and rheumatologists.

摘要

从几何失真或变换的图像中提取重要信息是图像处理中的主流程序。当图像因某种几何变形而失真时,检索相关区域变得困难。由于Hu矩具有独特的不变性,因此有助于从此类失真图像中提取信息。这项工作专注于利用Hu不变矩对膝关节骨关节炎进行早期检测和分级,以了解膝关节X光图像中软骨区域的几何变换。针对测试图像的旋转版本计算七个不变矩。所展示的结果更具竞争力且前景广阔,并得到了骨科医生和风湿病学家的验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1881/7805732/99552388e487/frobt-07-591827-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验