Suppr超能文献

变分 LSTM 自动编码器预测冠状病毒在全球的传播。

Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe.

机构信息

SpaceTimeLab, Department of Civil, Environmental and Geomatic Engineering, University College London (UCL), London, United Kingdom.

Department of Civil, Environmental and Geomatic Engineering, Centre for Transport Studies (CTS), University College London (UCL), London, United Kingdom.

出版信息

PLoS One. 2021 Jan 28;16(1):e0246120. doi: 10.1371/journal.pone.0246120. eCollection 2021.

Abstract

Modelling the spread of coronavirus globally while learning trends at global and country levels remains crucial for tackling the pandemic. We introduce a novel variational-LSTM Autoencoder model to predict the spread of coronavirus for each country across the globe. This deep Spatio-temporal model does not only rely on historical data of the virus spread but also includes factors related to urban characteristics represented in locational and demographic data (such as population density, urban population, and fertility rate), an index that represents the governmental measures and response amid toward mitigating the outbreak (includes 13 measures such as: 1) school closing, 2) workplace closing, 3) cancelling public events, 4) close public transport, 5) public information campaigns, 6) restrictions on internal movements, 7) international travel controls, 8) fiscal measures, 9) monetary measures, 10) emergency investment in health care, 11) investment in vaccines, 12) virus testing framework, and 13) contact tracing). In addition, the introduced method learns to generate a graph to adjust the spatial dependences among different countries while forecasting the spread. We trained two models for short and long-term forecasts. The first one is trained to output one step in future with three previous timestamps of all features across the globe, whereas the second model is trained to output 10 steps in future. Overall, the trained models show high validation for forecasting the spread for each country for short and long-term forecasts, which makes the introduce method a useful tool to assist decision and policymaking for the different corners of the globe.

摘要

在学习全球和国家层面趋势的同时,对冠状病毒在全球范围内的传播进行建模仍然是应对这一大流行病的关键。我们引入了一种新颖的变分长短期记忆自动编码器模型,用于预测全球各国冠状病毒的传播情况。这个深度时空模型不仅依赖于病毒传播的历史数据,还包括地理位置和人口数据中代表城市特征的相关因素(如人口密度、城市人口和生育率),以及一个代表政府在缓解疫情方面的措施和应对指数(包括 13 项措施,如:1)关闭学校,2)关闭工作场所,3)取消公共活动,4)关闭公共交通,5)开展公共信息宣传活动,6)限制内部流动,7)实施国际旅行管制,8)采取财政措施,9)采取货币措施,10)紧急投资于医疗保健,11)投资于疫苗,12)建立病毒检测框架,13)建立接触者追踪)。此外,所提出的方法还学会生成一个图,以调整不同国家之间的空间依赖关系,同时预测传播情况。我们训练了两个模型进行短期和长期预测。第一个模型的训练目的是在未来输出一步,并使用全球所有特征的三个前一时间戳;而第二个模型的训练目的是在未来输出 10 步。总的来说,训练有素的模型在预测每个国家的短期和长期传播方面表现出了很高的验证能力,这使得所提出的方法成为一个有用的工具,可以协助全球不同地区的决策和政策制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6bf/7842932/e3d0382e4ed7/pone.0246120.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验