Suppr超能文献

PAN-cODE:利用条件潜在 ODE 进行 COVID-19 预测。

PAN-cODE: COVID-19 forecasting using conditional latent ODEs.

机构信息

Department of Computer Science, University of Toronto, Toronto, Canada.

Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.

出版信息

J Am Med Inform Assoc. 2022 Nov 14;29(12):2089-2095. doi: 10.1093/jamia/ocac160.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths around the world and revealed the need for data-driven models of pandemic spread. Accurate pandemic caseload forecasting allows informed policy decisions on the adoption of non-pharmaceutical interventions (NPIs) to reduce disease transmission. Using COVID-19 as an example, we present Pandemic conditional Ordinary Differential Equation (PAN-cODE), a deep learning method to forecast daily increases in pandemic infections and deaths. By using a deep conditional latent variable model, PAN-cODE can generate alternative caseload trajectories based on alternate adoptions of NPIs, allowing stakeholders to make policy decisions in an informed manner. PAN-cODE also allows caseload estimation for regions that are unseen during model training. We demonstrate that, despite using less detailed data and having fully automated training, PAN-cODE's performance is comparable to state-of-the-art methods on 4-week-ahead and 6-week-ahead forecasting. Finally, we highlight the ability of PAN-cODE to generate realistic alternative outcome trajectories on select US regions.

摘要

新型冠状病毒肺炎(COVID-19)大流行已在全球范围内造成数百万人死亡,这凸显了我们需要建立数据驱动的大流行传播模型。准确预测大流行病例数,有利于决策者制定非药物干预(NPIs)措施以减少疾病传播。我们以 COVID-19 为例,提出了 Pandemic conditional Ordinary Differential Equation(PAN-cODE),这是一种用于预测大流行感染和死亡人数每日增长的深度学习方法。通过使用深度条件潜在变量模型,PAN-cODE 可以根据 NPIs 的不同采用情况生成替代病例轨迹,使利益相关者能够明智地做出决策。PAN-cODE 还可以对模型训练期间未见到的地区进行病例估计。我们证明,尽管使用的数据不那么详细且训练完全自动化,PAN-cODE 在 4 周和 6 周的预测方面的性能可与最先进的方法相媲美。最后,我们强调了 PAN-cODE 在选择的美国地区生成现实替代结果轨迹的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验