Suppr超能文献

大规模疫苗接种计划在抗击新冠疫情中的作用:基于长短期记忆网络的新冠确诊病例分析

The role of the mass vaccination programme in combating the COVID-19 pandemic: An LSTM-based analysis of COVID-19 confirmed cases.

作者信息

Hansun Seng, Charles Vincent, Gherman Tatiana

机构信息

Informatics Department, Universitas Multimedia Nusantara, Tangerang, Indonesia.

CENTRUM Católica Graduate Business School, Lima, Peru.

出版信息

Heliyon. 2023 Mar;9(3):e14397. doi: 10.1016/j.heliyon.2023.e14397. Epub 2023 Mar 8.

Abstract

The COVID-19 virus has impacted all facets of our lives. As a global response to this threat, vaccination programmes have been initiated and administered in numerous nations. The question remains, however, as to whether mass vaccination programmes result in a decrease in the number of confirmed COVID-19 cases. In this study, we aim to predict the future number of COVID-19 confirmed cases for the top ten countries with the highest number of vaccinations in the world. A well-known Deep Learning method for time series analysis, namely, the Long Short-Term Memory (LSTM) networks, is applied as the prediction method. Using three evaluation metrics, i.e., Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), we found that the model built by using LSTM networks could give a good prediction of the future number and trend of COVID-19 confirmed cases in the considered countries. Two different scenarios are employed, namely: 'All Time', which includes all historical data; and 'Before Vaccination', which excludes data collected after the mass vaccination programme began. The average MAPE scores for the 'All Time' and 'Before Vaccination' scenarios are 5.977% and 10.388%, respectively. Overall, the results show that the mass vaccination programme has a positive impact on decreasing and controlling the spread of the COVID-19 disease in those countries, as evidenced by decreasing future trends after the programme was implemented.

摘要

新冠病毒已经影响到我们生活的方方面面。作为对这一威胁的全球应对措施,许多国家已经启动并实施了疫苗接种计划。然而,大规模疫苗接种计划是否会导致新冠确诊病例数减少,这一问题仍然存在。在本研究中,我们旨在预测全球疫苗接种量最高的十个国家未来的新冠确诊病例数。一种著名的用于时间序列分析的深度学习方法,即长短期记忆(LSTM)网络,被用作预测方法。使用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)这三个评估指标,我们发现使用LSTM网络构建的模型能够很好地预测所考虑国家未来新冠确诊病例的数量和趋势。采用了两种不同的情景,即:“所有时间”,包括所有历史数据;以及“疫苗接种前”,排除大规模疫苗接种计划开始后收集的数据。“所有时间”和“疫苗接种前”情景的平均MAPE分数分别为5.977%和10.388%。总体而言,结果表明大规模疫苗接种计划对这些国家减少和控制新冠疾病的传播有积极影响,该计划实施后未来趋势下降就证明了这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0be6/10023954/1325793f2025/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验