Suppr超能文献

针对新型冠状病毒 2 型主要蛋白酶的拟肽抑制剂的计算研究

Computational study on peptidomimetic inhibitors against SARS-CoV-2 main protease.

作者信息

Somboon Tuanjai, Mahalapbutr Panupong, Sanachai Kamonpan, Maitarad Phornphimon, Lee Vannajan Sanghiran, Hannongbua Supot, Rungrotmongkol Thanyada

机构信息

Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

出版信息

J Mol Liq. 2021 Jan 15;322:114999. doi: 10.1016/j.molliq.2020.114999. Epub 2020 Dec 9.

Abstract

The emergence outbreak caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received significant attention on the global risks. Due to itscrucial role in viral replication, the main protease 3CL is an important target for drug discovery and development to combat COVID-19. In this work, the structural and dynamic behaviors as well as binding efficiency of the four peptidomimetic inhibitors (N3, 11a, 13b, and 14b) recently co-crystalized with SARS-CoV-2 3CL were studied and compared using all-atom molecular dynamics (MD) simulations and solvated interaction energy-based binding free energy calculations. The per-residue decomposition free energy results suggested that the key residues involved in inhibitors binding were H41, M49, L141-C145, H163-E166, P168, and Q189-T190 in the domains I and II. The van der Waals interaction yielded the main energy contribution stabilizing all the focused inhibitors. Besides, their hydrogen bond formations with F140, G143, C145, H164, E166, and Q189 residues in the substrate-binding pocket were also essential for strengthening the molecular complexation. The predicted binding affinity of the four peptidomimetic inhibitors agreed with the reported experimental data, and the 13b showed the most efficient binding to SARS-CoV-2 3CL. From rational drug design strategies based on 13b, the polar moieties (e.g., benzamide) and the bulky N-terminal protecting groups (e.g., thiazole) should be introduced to P1' and P4 sites in order to enhance H-bonds and hydrophobic interactions, respectively. We hope that the obtained structural and energetic information could be beneficial for developing novel SARS-CoV-2 3CL inhibitors with higher inhibitory potency to combat COVID-19.

摘要

由新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发的疫情爆发已受到全球风险方面的高度关注。由于其在病毒复制中起关键作用,主要蛋白酶3CL是对抗新型冠状病毒肺炎(COVID-19)药物研发的重要靶点。在这项工作中,使用全原子分子动力学(MD)模拟和基于溶剂化相互作用能的结合自由能计算,研究并比较了最近与SARS-CoV-2 3CL共结晶的四种拟肽抑制剂(N3、11a、13b和14b)的结构和动力学行为以及结合效率。残基分解自由能结果表明,在结构域I和II中,参与抑制剂结合的关键残基为H41、M49、L141 - C145、H163 - E166、P168以及Q189 - T190。范德华相互作用对稳定所有重点研究的抑制剂贡献了主要能量。此外,它们与底物结合口袋中的F140、G143、C145、H164、E166和Q189残基形成的氢键对于加强分子络合也至关重要。四种拟肽抑制剂的预测结合亲和力与报道的实验数据相符,且13b对SARS-CoV-2 3CL的结合效率最高。基于13b的合理药物设计策略,应在P1'和P4位点分别引入极性基团(如苯甲酰胺)和庞大的N端保护基团(如噻唑),以分别增强氢键和疏水相互作用。我们希望所获得的结构和能量信息有助于开发具有更高抑制效力的新型SARS-CoV-2 3CL抑制剂来对抗COVID-19。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d161/7832253/29a285593999/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验