Suppr超能文献

一种基于深度学习的使用胸部X光图像的COVID-19自动诊断框架。

A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images.

作者信息

Joshi Rakesh Chandra, Yadav Saumya, Pathak Vinay Kumar, Malhotra Hardeep Singh, Khokhar Harsh Vardhan Singh, Parihar Anit, Kohli Neera, Himanshu D, Garg Ravindra K, Bhatt Madan Lal Brahma, Kumar Raj, Singh Naresh Pal, Sardana Vijay, Burget Radim, Alippi Cesare, Travieso-Gonzalez Carlos M, Dutta Malay Kishore

机构信息

Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, U.P., India.

King George's Medical University, Lucknow, U.P., India.

出版信息

Biocybern Biomed Eng. 2021 Jan-Mar;41(1):239-254. doi: 10.1016/j.bbe.2021.01.002. Epub 2021 Jan 16.

Abstract

The lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the global population severely, and a huge number of people may have to be screened in the future. There is a need for effective and reliable systems that perform automatic detection and mass screening of COVID-19 as a quick alternative diagnostic option to control its spread. A robust deep learning-based system is proposed to detect the COVID-19 using chest X-ray images. Infected patient's chest X-ray images reveal numerous opacities (denser, confluent, and more profuse) in comparison to healthy lungs images which are used by a deep learning algorithm to generate a model to facilitate an accurate diagnostics for multi-class classification (COVID vs. normal vs. bacterial pneumonia vs. viral pneumonia) and binary classification (COVID-19 vs. non-COVID). COVID-19 positive images have been used for training and model performance assessment from several hospitals of India and also from countries like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The data were divided into training, validation and test sets. The average test accuracy of 97.11 ± 2.71% was achieved for multi-class (COVID vs. normal vs. pneumonia) and 99.81% for binary classification (COVID-19 vs. non-COVID). The proposed model performs rapid disease detection in 0.137 s per image in a system equipped with a GPU and can reduce the workload of radiologists by classifying thousands of images on a single click to generate a probabilistic report in real-time.

摘要

致命的2019新型冠状病毒病(COVID-19)大流行正在严重影响全球人口的健康,未来可能有大量人员需要进行筛查。需要有效且可靠的系统来对COVID-19进行自动检测和大规模筛查,作为控制其传播的快速替代诊断选项。本文提出了一种基于深度学习的强大系统,用于使用胸部X光图像检测COVID-19。与健康肺部图像相比,感染患者的胸部X光图像显示出大量不透明区域(更密集、融合且更丰富),深度学习算法利用这些图像生成一个模型,以促进对多类分类(COVID与正常、细菌性肺炎与病毒性肺炎)和二元分类(COVID-19与非COVID)的准确诊断。来自印度多家医院以及澳大利亚、比利时、加拿大、中国、埃及、德国、伊朗、以色列、意大利、韩国、西班牙、台湾、美国和越南等国家和地区的COVID-19阳性图像已用于训练和模型性能评估。数据被分为训练集、验证集和测试集。多类分类(COVID与正常、肺炎)的平均测试准确率为97.11±2.71%,二元分类(COVID-19与非COVID)的平均测试准确率为99.81%。所提出的模型在配备GPU的系统中每张图像只需0.137秒即可进行快速疾病检测,并且通过一键对数千张图像进行分类以实时生成概率报告,可以减轻放射科医生的工作量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6e8/7837255/9b4d581c3a3d/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验