Suppr超能文献

使用实时相位分辨多普勒频谱编码干涉显微镜对气管纤毛搏动频率进行空间映射。

Spatial mapping of tracheal ciliary beat frequency using real time phase-resolved Doppler spectrally encoded interferometric microscopy.

作者信息

He Youmin, Jing Joseph C, Qu Yueqiao, Wong Brian J, Chen Zhongping

机构信息

Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA.

出版信息

ACS Photonics. 2020 Jan 15;7(1):128-134. doi: 10.1021/acsphotonics.9b01235. Epub 2019 Dec 3.

Abstract

Ciliary motion in the upper airway is the primary mechanism by which the body transports foreign particulates out of the respiratory system in order to maintain proper respiratory function. The ciliary beating frequency (CBF) is often disrupted with the onset of disease as well as other conditions, such as changes in temperature or in response to drug administration. Current imaging of ciliary motion relies on microscopy and high-speed cameras, which cannot be easily adapted to in-vivo imaging. M-mode optical coherence tomography (OCT) imaging is capable of visualization of ciliary activity, but the field of view is limited. We report on the development of a spectrally encoded interferometric microscopy (SEIM) system using a phase-resolved Doppler (PRD) algorithm to measure and map the ciliary beating frequency within an region. This novel high speed, high resolution system allows for visualization of both temporal and spatial ciliary motion patterns as well as propagation of metachronal wave. Rabbit tracheal CBF ranging from 9 to 13 Hz has been observed under different temperature conditions, and the effects of using lidocaine and albuterol have also been measured. This study is the stepping stone to in-vivo studies and the translation of imaging spatial CBF to clinics.

摘要

上呼吸道中的纤毛运动是人体将外来颗粒输送出呼吸系统以维持正常呼吸功能的主要机制。随着疾病的发生以及其他情况,如温度变化或对药物给药的反应,纤毛跳动频率(CBF)常常会受到干扰。目前对纤毛运动的成像依赖于显微镜和高速摄像机,而这些不易适用于体内成像。M模式光学相干断层扫描(OCT)成像能够可视化纤毛活动,但视野有限。我们报告了一种光谱编码干涉显微镜(SEIM)系统的开发,该系统使用相位分辨多普勒(PRD)算法来测量和绘制一个区域内的纤毛跳动频率。这种新型的高速、高分辨率系统能够可视化纤毛运动的时间和空间模式以及同步波的传播。在不同温度条件下观察到兔气管CBF范围为9至13赫兹,并且还测量了使用利多卡因和沙丁胺醇的效果。这项研究是体内研究以及将成像空间CBF转化应用于临床的垫脚石。

相似文献

1
Spatial mapping of tracheal ciliary beat frequency using real time phase-resolved Doppler spectrally encoded interferometric microscopy.
ACS Photonics. 2020 Jan 15;7(1):128-134. doi: 10.1021/acsphotonics.9b01235. Epub 2019 Dec 3.
2
Characterization of oviduct ciliary beat frequency using real time phase resolved Doppler spectrally encoded interferometric microscopy.
Biomed Opt Express. 2019 Oct 11;10(11):5650-5659. doi: 10.1364/BOE.10.005650. eCollection 2019 Nov 1.
3
Phase-resolved dynamic wavefront imaging of cilia metachronal waves.
Quant Imaging Med Surg. 2023 Apr 1;13(4):2364-2375. doi: 10.21037/qims-22-439. Epub 2023 Mar 8.
5
Measurement of ciliary beat frequency using Doppler optical coherence tomography.
Int Forum Allergy Rhinol. 2015 Nov;5(11):1048-54. doi: 10.1002/alr.21582. Epub 2015 Jul 2.
6
7
Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects.
Chest. 2017 May;151(5):993-1001. doi: 10.1016/j.chest.2016.09.015. Epub 2016 Sep 29.
8
Paramecium swimming and ciliary beating patterns: a study on four RNA interference mutations.
Integr Biol (Camb). 2015 Jan;7(1):90-100. doi: 10.1039/c4ib00181h.

引用本文的文献

1
Optical Imaging of Cilia in the Head and Neck.
J Clin Med. 2025 Mar 18;14(6):2059. doi: 10.3390/jcm14062059.
2
detection of pulmonary mucociliary clearance: present challenges and future directions.
Eur Respir Rev. 2024 Sep 18;33(173). doi: 10.1183/16000617.0073-2024. Print 2024 Jul.
4
volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography.
Optica. 2023 Nov 20;10(11):1439-1451. doi: 10.1364/optica.499927. Epub 2023 Nov 2.
5
Phase-resolved dynamic wavefront imaging of cilia metachronal waves.
Quant Imaging Med Surg. 2023 Apr 1;13(4):2364-2375. doi: 10.21037/qims-22-439. Epub 2023 Mar 8.
6
Light-sheet laser speckle imaging for cilia motility assessment.
Comput Struct Biotechnol J. 2023 Feb 20;21:1661-1669. doi: 10.1016/j.csbj.2023.02.036. eCollection 2023.

本文引用的文献

1
Confocal Shear Wave Acoustic Radiation Force Optical Coherence Elastography for Imaging and Quantification of the In Vivo Posterior Eye.
IEEE J Sel Top Quantum Electron. 2019 Jan-Feb;25(1). doi: 10.1109/jstqe.2018.2834435. Epub 2018 May 8.
2
Intranasal micro-optical coherence tomography imaging for cystic fibrosis studies.
Sci Transl Med. 2019 Aug 7;11(504). doi: 10.1126/scitranslmed.aav3505.
3
Quantified elasticity mapping of retinal layers using synchronized acoustic radiation force optical coherence elastography.
Biomed Opt Express. 2018 Aug 2;9(9):4054-4063. doi: 10.1364/BOE.9.004054. eCollection 2018 Sep 1.
5
In Vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):455-461. doi: 10.1167/iovs.17-22971.
6
Prolonged in vivo functional assessment of the mouse oviduct using optical coherence tomography through a dorsal imaging window.
J Biophotonics. 2018 May;11(5):e201700316. doi: 10.1002/jbio.201700316. Epub 2018 Feb 8.
8
Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited].
Biomed Opt Express. 2017 Jun 15;8(7):3248-3280. doi: 10.1364/BOE.8.003248. eCollection 2017 Jul 1.
10
Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography.
JCI Insight. 2017 Mar 9;2(5):e91702. doi: 10.1172/jci.insight.91702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验