Suppr超能文献

太空:终极边疆——在植物中实现单细胞、空间分辨转录组学。

Space: the final frontier - achieving single-cell, spatially resolved transcriptomics in plants.

机构信息

Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A.

Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, U.S.A.

出版信息

Emerg Top Life Sci. 2021 May 21;5(2):179-188. doi: 10.1042/ETLS20200274.

Abstract

Single-cell RNA-seq is a tool that generates a high resolution of transcriptional data that can be used to understand regulatory networks in biological systems. In plants, several methods have been established for transcriptional analysis in tissue sections, cell types, and/or single cells. These methods typically require cell sorting, transgenic plants, protoplasting, or other damaging or laborious processes. Additionally, the majority of these technologies lose most or all spatial resolution during implementation. Those that offer a high spatial resolution for RNA lack breadth in the number of transcripts characterized. Here, we briefly review the evolution of spatial transcriptomics methods and we highlight recent advances and current challenges in sequencing, imaging, and computational aspects toward achieving 3D spatial transcriptomics of plant tissues with a resolution approaching single cells. We also provide a perspective on the potential opportunities to advance this novel methodology in plants.

摘要

单细胞 RNA 测序是一种能够生成高分辨率转录数据的工具,可用于理解生物系统中的调控网络。在植物中,已经建立了几种用于组织切片、细胞类型和/或单细胞中转录分析的方法。这些方法通常需要细胞分选、转基因植物、原生质体化或其他有损伤或费力的过程。此外,这些技术中的大多数在实施过程中都会失去大部分或全部空间分辨率。那些提供高空间分辨率 RNA 的技术在表征的转录本数量上缺乏广度。在这里,我们简要回顾了空间转录组学方法的发展,并强调了测序、成像和计算方面的最新进展和当前挑战,以实现具有接近单细胞分辨率的植物组织的 3D 空间转录组学。我们还提供了对在植物中推进这一新方法的潜在机会的看法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验