Ghaffarzadegan Navid, Rahmandad Hazhir
Department of Industrial and Systems Engineering Virginia Tech Falls Church VA USA.
Sloan School of Management MIT Cambridge MA USA.
Syst Dyn Rev. 2020 Jan-Mar;36(1):101-129. doi: 10.1002/sdr.1655. Epub 2020 Jul 6.
Understanding the state of the COVID-19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation-based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state. © 2020 System Dynamics Society.
了解新冠疫情状况依赖于感染和死亡率数据。然而,由于症状有限和检测能力不足,官方数据可能低估实际病例数。我们提供一种基于模拟的方法,该方法结合各种数据来源来估计疫情规模。在疫情早期,我们将该方法应用于伊朗的情况,伊朗是2020年冬季疫情的一个中心。使用截至2020年3月20日的数据进行的估计显示,累计病例达91.6万例(90%不确定区间:50.8万例,150万例),总死亡人数为15485例(90%不确定区间:8400例,25800例),这些数字比官方统计数据高出一个数量级。我们的预测表明,如果不能持续大力减少接触,疫情可能会再次出现。我们还利用后续几个月的数据和研究来反思最初估计的质量。我们提出的方法可用于其他类似情况,以更准确、更早地估计疫情状况。© 2020系统动力学学会