Suppr超能文献

亚精胺:在调控植物干旱胁迫响应中的新作用。

Spermine: Its Emerging Role in Regulating Drought Stress Responses in Plants.

机构信息

State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.

Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic.

出版信息

Cells. 2021 Jan 28;10(2):261. doi: 10.3390/cells10020261.

Abstract

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants' ability to tolerate drought stress. Spm's role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.

摘要

近年来,关于亚精胺(Spm)的研究揭示了这种必需多胺的许多新信息,尤其是它能够抵抗非生物胁迫造成的损害。Spm 已被证明能够保护植物免受多种环境胁迫的影响,但它是否能预防干旱的不利影响尚未有报道。干旱胁迫会增加植物内源 Spm,外源施用 Spm 可以提高植物耐受干旱胁迫的能力。Spm 在增强抗氧化防御机制、甘油醛系统、甲基乙二醛(MG)解毒以及对干旱诱导的氧化应激产生耐受性方面的作用在植物中已有充分的记录。然而,酶活性和渗透调节对 Spm 生物合成和代谢的影响是可变的。Spm 与其他分子如一氧化氮(NO)和植物激素如脱落酸、水杨酸、油菜素内酯和乙烯相互作用,协调形成耐旱性所需的反应。这篇综述重点关注 Spm 在严重干旱胁迫下对植物的作用。我们提出了一些模型来解释 Spm 如何与植物现有的防御机制相互作用以提高耐旱性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9c1/7912026/11b0afecb075/cells-10-00261-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验