Suppr超能文献

竞争性内源 RNA 网络分析探讨 1 型糖尿病中的关键 lncRNAs、miRNAs 和 mRNAs。

Competing endogenous RNA network analysis explores the key lncRNAs, miRNAs, and mRNAs in type 1 diabetes.

机构信息

Departments of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.

Departments of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.

出版信息

BMC Med Genomics. 2021 Feb 1;14(1):35. doi: 10.1186/s12920-021-00877-3.

Abstract

BACKGROUND

Type 1 diabetes (T1D, named insulin-dependent diabetes) has a relatively rapid onset and significantly decreases life expectancy. This study is conducted to reveal the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axises implicated in T1D.

METHODS

The gene expression profile under GSE55100 (GPL570 and GPL8786 datasets; including 12 T1D samples and 10 normal samples for each dataset) was extracted from Gene Expression Omnibus database. Using limma package, the differentially expressed mRNAs (DE-mRNAs), miRNAs (DE-miRNAs), and lncRNAs (DE-lncRNAs) between T1D and normal samples were analyzed. For the DE-mRNAs, the functional terms were enriched by DAVID tool, and the significant pathways were enriched using gene set enrichment analysis. The interactions among DE-lncRNAs, DE-miRNAs and DE-mRNAs were predicted using mirwalk and starbase. The lncRNA-miRNA-mRNA interaction network analysis was visualized by Cytoscape. The key genes in the interaction network were verified by quantitatively real-time PCR.

RESULTS

In comparison to normal samples, 236 DE-mRNAs, 184 DE-lncRNAs, and 45 DE-miRNAs in T1D samples were identified. For the 236 DE-mRNAs, 16 Gene Ontology (GO)_biological process (BP) terms, four GO_cellular component (CC) terms, and 57 significant pathways were enriched. A network involving 36 DE-mRNAs, 8 DE- lncRNAs, and 15 DE-miRNAs was built, such as TRG-AS1-miR-23b/miR-423-PPM1L and GAS5-miR-320a/miR-23b/miR-423-SERPINA1 regulatory axises. Quantitatively real-time PCR successfully validated the expression levels of TRG-AS1- miR-23b -PPM1L and GAS5-miR-320a- SERPINA1.

CONCLUSION

TRG-AS1-miR-23b-PPM1L and GAS5-miR-320a-SERPINA1 regulatory axises might impact the pathogenesis of T1D.

摘要

背景

1 型糖尿病(T1D,也称胰岛素依赖型糖尿病)发病迅速,显著缩短预期寿命。本研究旨在揭示与 T1D 相关的长链非编码 RNA(lncRNA)-微小 RNA(miRNA)-mRNA 调控轴。

方法

从基因表达综合数据库中提取基因表达谱数据集 GSE55100(GPL570 和 GPL8786 数据集;每个数据集包括 12 例 T1D 样本和 10 例正常样本)。使用 limma 包分析 T1D 与正常样本间差异表达的信使 RNA(DE-mRNA)、miRNA(DE-miRNA)和 lncRNA(DE-lncRNA)。针对 DE-mRNA,采用 DAVID 工具进行功能术语富集,采用基因集富集分析进行显著通路富集。使用 mirwalk 和 starbase 预测 DE-lncRNA、DE-miRNA 与 DE-mRNA 间的相互作用。通过 Cytoscape 可视化 lncRNA-miRNA-mRNA 相互作用网络分析。通过定量实时 PCR 验证互作网络中的关键基因。

结果

与正常样本相比,T1D 样本中发现 236 个 DE-mRNA、184 个 DE-lncRNA 和 45 个 DE-miRNA。针对 236 个 DE-mRNA,进行了 16 个基因本体论(GO)生物过程(BP)术语、4 个 GO 细胞成分(CC)术语和 57 个显著通路的富集分析。构建了一个包含 36 个 DE-mRNA、8 个 DE-lncRNA 和 15 个 DE-miRNA 的网络,如 TRG-AS1-miR-23b/miR-423-PPM1L 和 GAS5-miR-320a/miR-23b/miR-423-SERPINA1 调控轴。定量实时 PCR 成功验证了 TRG-AS1-miR-23b-PPM1L 和 GAS5-miR-320a-SERPINA1 的表达水平。

结论

TRG-AS1-miR-23b-PPM1L 和 GAS5-miR-320a-SERPINA1 调控轴可能影响 T1D 的发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c5/7852109/59698ab6502a/12920_2021_877_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验