Martín-Cabezuelo Rubén, Rodríguez-Hernández José Carlos, Vilariño-Feltrer Guillermo, Vallés-Lluch Ana
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain.
Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
Polymers (Basel). 2021 Jan 26;13(3):382. doi: 10.3390/polym13030382.
A novel procedure to obtain smooth, continuous polymeric surfaces from poly(glycerol sebacate) (PGS) has been developed with the spin-coating technique. This method proves useful for separating the effect of the chemistry and morphology of the networks (that can be obtained by varying the synthesis parameters) on cell-protein-substrate interactions from that of structural variables. Solutions of the PGS pre-polymer can be spin-coated, to then be cured. Curing under variable temperatures has been shown to lead to PGS networks with different chemical properties and topographies, conditioning their use as a biomaterial. Particularly, higher synthesis temperatures yield denser networks with fewer polar terminal groups available on the surface. Material-protein interactions were characterised by using extracellular matrix proteins such as fibronectin (Fn) and collagen type I (Col I), to unveil the biological interface profile of PGS substrates. To that end, atomic force microscopy (AFM) images and quantification of protein adsorbed in single, sequential and competitive protein incubations were used. Results reveal that Fn is adsorbed in the form of clusters, while Col I forms a characteristic fibrillar network. Fn has an inhibitory effect when incubated prior to Col I. Human umbilical endothelial cells (HUVECs) were also cultured on PGS surfaces to reveal the effect of synthesis temperature on cell behaviour. To this effect, early focal adhesions (FAs) were analysed using immunofluorescence techniques. In light of the results, 130 °C seems to be the optimal curing temperature since a preliminary treatment with Col I or a Fn:Col I solution facilitates the formation of early focal adhesions and growth of HUVECs.
利用旋涂技术开发了一种从聚癸二酸甘油酯(PGS)获得光滑、连续聚合物表面的新方法。该方法被证明有助于区分网络的化学性质和形态(可通过改变合成参数获得)对细胞-蛋白质-底物相互作用的影响与结构变量的影响。PGS预聚物溶液可进行旋涂,然后固化。已表明在可变温度下固化会导致具有不同化学性质和形貌的PGS网络,从而决定了它们作为生物材料的用途。特别地,较高的合成温度会产生密度更高的网络,其表面上可用的极性端基较少。通过使用细胞外基质蛋白如纤连蛋白(Fn)和I型胶原蛋白(Col I)来表征材料-蛋白质相互作用,以揭示PGS底物的生物界面特征。为此,使用了原子力显微镜(AFM)图像以及对单次、连续和竞争性蛋白质孵育中吸附的蛋白质进行定量分析。结果表明,Fn以簇的形式吸附,而Col I形成特征性的纤维状网络。当在Col I之前孵育时,Fn具有抑制作用。还在PGS表面培养了人脐静脉内皮细胞(HUVECs),以揭示合成温度对细胞行为的影响。为此,使用免疫荧光技术分析早期粘着斑(FAs)。根据结果,130°C似乎是最佳固化温度,因为用Col I或Fn:Col I溶液进行预处理有助于早期粘着斑的形成和HUVECs的生长。