Suppr超能文献

使用原子模拟深入了解 G-四链体-血红素动力学:对反应性和折叠的影响。

Insights into G-Quadruplex-Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding.

机构信息

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.

Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic.

出版信息

J Chem Theory Comput. 2021 Mar 9;17(3):1883-1899. doi: 10.1021/acs.jctc.0c01176. Epub 2021 Feb 3.

Abstract

Guanine quadruplex nucleic acids (G4s) are involved in key biological processes such as replication or transcription. Beyond their biological relevance, G4s find applications as biotechnological tools since they readily bind hemin and enhance its peroxidase activity, creating a G4-DNAzyme. The biocatalytic properties of G4-DNAzymes have been thoroughly studied and used for biosensing purposes. Despite hundreds of applications and massive experimental efforts, the atomistic details of the reaction mechanism remain unclear. To help select between the different hypotheses currently under investigation, we use extended explicit-solvent molecular dynamics (MD) simulations to scrutinize the G4/hemin interaction. We find that besides the dominant conformation in which hemin is stacked atop the external G-quartets, hemin can also transiently bind to the loops and be brought to the external G-quartets through diverse delivery mechanisms. The simulations do not support the catalytic mechanism relying on a wobbling guanine. Similarly, the catalytic role of the iron-bound water molecule is not in line with our results; however, given the simulation limitations, this observation should be considered with some caution. The simulations rather suggest tentative mechanisms in which the external G-quartet itself could be responsible for the unique HO-promoted biocatalytic properties of the G4/hemin complexes. Once stacked atop a terminal G-quartet, hemin rotates about its vertical axis while readily sampling shifted geometries where the iron transiently contacts oxygen atoms of the adjacent G-quartet. This dynamics is not apparent from the ensemble-averaged structure. We also visualize transient interactions between the stacked hemin and the G4 loops. Finally, we investigated interactions between hemin and on-pathway folding intermediates of the parallel-stranded G4 fold. The simulations suggest that hemin drives the folding of parallel-stranded G4s from slip-stranded intermediates, acting as a G4 chaperone. Limitations of the MD technique are briefly discussed.

摘要

鸟嘌呤四链体核酸(G4s)参与关键的生物学过程,如复制或转录。除了具有生物学相关性外,G4s 还可用作生物技术工具,因为它们容易与血红素结合并增强其过氧化物酶活性,从而形成 G4-DNA 酶。G4-DNA 酶的生物催化特性已得到深入研究,并被用于生物传感目的。尽管有数百种应用和大量的实验努力,但反应机制的原子细节仍不清楚。为了帮助在目前正在研究的不同假设之间进行选择,我们使用扩展的显式溶剂分子动力学(MD)模拟来仔细研究 G4/血红素相互作用。我们发现,除了血红素堆积在外层 G-四联体上的主要构象外,血红素还可以通过多种传递机制短暂结合到环中并带到外部 G-四联体。模拟不支持依赖摆动鸟嘌呤的催化机制。同样,铁结合水分子的催化作用与我们的结果不一致;然而,考虑到模拟的局限性,应该谨慎地考虑这一观察结果。模拟反而提出了一些假设机制,其中外部 G-四联体本身可能负责 G4/血红素复合物独特的 HO 促进的生物催化特性。一旦堆积在外层 G-四联体上,血红素就会围绕其垂直轴旋转,同时很容易采样移位的几何形状,其中铁瞬时接触相邻 G-四联体的氧原子。这种动力学从平均结构中看不出来。我们还可视化了堆叠的血红素和 G4 环之间的瞬时相互作用。最后,我们研究了血红素与平行链 G4 折叠的路径内折叠中间体之间的相互作用。模拟表明,血红素从滑链中间体驱动平行链 G4 的折叠,充当 G4 伴侣。简要讨论了 MD 技术的局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验