Suppr超能文献

细胞外 G-四链体和 Z-DNA 可保护生物膜免受 DNase I 的影响,并且 G-四链体形成具有过氧化物酶活性的 DNA 酶。

Extracellular G-quadruplexes and Z-DNA protect biofilms from DNase I, and G-quadruplexes form a DNAzyme with peroxidase activity.

机构信息

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.

Department Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus N, Denmark.

出版信息

Nucleic Acids Res. 2024 Feb 28;52(4):1575-1590. doi: 10.1093/nar/gkae034.

Abstract

Many bacteria form biofilms to protect themselves from predators or stressful environmental conditions. In the biofilm, bacteria are embedded in a protective extracellular matrix composed of polysaccharides, proteins and extracellular DNA (eDNA). eDNA most often is released from lysed bacteria or host mammalian cells, and it is the only matrix component most biofilms appear to have in common. However, little is known about the form DNA takes in the extracellular space, and how different non-canonical DNA structures such as Z-DNA or G-quadruplexes might contribute to its function in the biofilm. The aim of this study was to determine if non-canonical DNA structures form in eDNA-rich staphylococcal biofilms, and if these structures protect the biofilm from degradation by nucleases. We grew Staphylococcus epidermidis biofilms in laboratory media supplemented with hemin and NaCl to stabilize secondary DNA structures and visualized their location by immunolabelling and fluorescence microscopy. We furthermore visualized the macroscopic biofilm structure by optical coherence tomography. We developed assays to quantify degradation of Z-DNA and G-quadruplex DNA oligos by different nucleases, and subsequently investigated how these enzymes affected eDNA in the biofilms. Z-DNA and G-quadruplex DNA were abundant in the biofilm matrix, and were often present in a web-like structures. In vitro, the structures did not form in the absence of NaCl or mechanical shaking during biofilm growth, or in bacterial strains deficient in eDNA or exopolysaccharide production. We thus infer that eDNA and polysaccharides interact, leading to non-canonical DNA structures under mechanical stress when stabilized by salt. We also confirmed that G-quadruplex DNA and Z-DNA was present in biofilms from infected implants in a murine implant-associated osteomyelitis model. Mammalian DNase I lacked activity against Z-DNA and G-quadruplex DNA, while Micrococcal nuclease could degrade G-quadruplex DNA and S1 Aspergillus nuclease could degrade Z-DNA. Micrococcal nuclease, which originates from Staphylococcus aureus, may thus be key for dispersal of biofilm in staphylococci. In addition to its structural role, we show for the first time that the eDNA in biofilms forms a DNAzyme with peroxidase-like activity in the presence of hemin. While peroxidases are part of host defenses against pathogens, we now show that biofilms can possess intrinsic peroxidase activity in the extracellular matrix.

摘要

许多细菌形成生物膜以保护自己免受捕食者或压力环境条件的影响。在生物膜中,细菌嵌入由多糖、蛋白质和细胞外 DNA (eDNA)组成的保护性细胞外基质中。eDNA 最常从裂解的细菌或宿主哺乳动物细胞中释放出来,而且它是唯一似乎大多数生物膜都共有的基质成分。然而,人们对细胞外空间中 DNA 的形式知之甚少,也不知道不同的非典型 DNA 结构,如 Z-DNA 或 G-四链体,如何有助于其在生物膜中的功能。本研究的目的是确定富含 eDNA 的葡萄球菌生物膜中是否形成非典型 DNA 结构,以及这些结构是否能保护生物膜免受核酸酶的降解。我们在含有血红素和 NaCl 的实验室培养基中培养表皮葡萄球菌生物膜,以稳定二级 DNA 结构,并通过免疫标记和荧光显微镜观察其位置。我们还通过光相干断层扫描观察宏观生物膜结构。我们开发了定量测定不同核酸酶对 Z-DNA 和 G-四链体 DNA 寡聚物降解的方法,然后研究了这些酶如何影响生物膜中的 eDNA。Z-DNA 和 G-四链体 DNA 在生物膜基质中丰富,并且经常存在于网状结构中。在体外,如果没有 NaCl 或在生物膜生长过程中机械摇动,或者在缺乏 eDNA 或胞外多糖产生的细菌菌株中,这些结构都不会形成。因此,我们推断 eDNA 和多糖相互作用,在机械应力下导致非典型 DNA 结构,同时通过盐稳定。我们还证实,在感染小鼠植入物相关骨髓炎模型中植入物相关感染的植入物生物膜中存在 G-四链体 DNA 和 Z-DNA。哺乳动物 DNase I 对 Z-DNA 和 G-四链体 DNA 没有活性,而微球菌核酸酶可以降解 G-四链体 DNA,而 S1 曲霉核酸酶可以降解 Z-DNA。微球菌核酸酶起源于金黄色葡萄球菌,因此可能是葡萄球菌生物膜分散的关键。除了其结构作用外,我们还首次表明,在血红素存在的情况下,生物膜中的 eDNA 形成具有过氧化物酶样活性的 DNA 酶。虽然过氧化物酶是宿主防御病原体的一部分,但我们现在表明,生物膜可以在细胞外基质中具有内在的过氧化物酶活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed7/10939358/5b8bd34a8bcc/gkae034figgra1.jpg

相似文献

2
The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures.
NPJ Biofilms Microbiomes. 2021 Mar 19;7(1):27. doi: 10.1038/s41522-021-00197-5.
3
Identification of Extracellular DNA-Binding Proteins in the Biofilm Matrix.
mBio. 2019 Jun 25;10(3):e01137-19. doi: 10.1128/mBio.01137-19.
4
Does Extracellular DNA Production Vary in Staphylococcal Biofilms Isolated From Infected Implants versus Controls?
Clin Orthop Relat Res. 2017 Aug;475(8):2105-2113. doi: 10.1007/s11999-017-5266-0. Epub 2017 Feb 13.
6
A distinguishable role of eDNA in the viscoelastic relaxation of biofilms.
mBio. 2013 Oct 15;4(5):e00497-13. doi: 10.1128/mBio.00497-13.
7
Micrococcal nuclease regulates biofilm formation and dispersal in methicillin-resistant USA300.
mSphere. 2024 May 29;9(5):e0012624. doi: 10.1128/msphere.00126-24. Epub 2024 May 2.
8
Construction of Metal-Ion-Free G-quadruplex-Hemin DNAzyme and Its Application in S1 Nuclease Detection.
ACS Appl Mater Interfaces. 2016 Jan 13;8(1):827-33. doi: 10.1021/acsami.5b10165. Epub 2015 Dec 24.
10
Host factors abolish the need for polysaccharides and extracellular matrix-binding protein in biofilm formation.
J Med Microbiol. 2021 Mar;70(3). doi: 10.1099/jmm.0.001287. Epub 2021 Jan 22.

引用本文的文献

1
Hemin-binding DNA structures on the surface of bacteria promote extracellular electron transfer.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf790.
2
4
The Flipons, Infections, and Amyloids that Foreshadow the Fading Memories of Alzheimer's Disease.
Neurosci Insights. 2025 Jun 6;20:26331055251338815. doi: 10.1177/26331055251338815. eCollection 2025.
5
Eliminating viscosity challenges in continuous cultivation of yeast producing a GLP-1 like peptide.
Microb Cell Fact. 2025 Jun 5;24(1):130. doi: 10.1186/s12934-025-02745-6.
6
Dental biofilms contain DNase I-resistant Z-DNA and G-quadruplexes but alternative DNase overcomes this resistance.
NPJ Biofilms Microbiomes. 2025 May 19;11(1):80. doi: 10.1038/s41522-025-00694-x.
7
Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.
Adv Mater. 2025 Mar;37(9):e2415030. doi: 10.1002/adma.202415030. Epub 2025 Jan 10.
8
Neutrophil extracellular traps have active DNAzymes that promote bactericidal activity.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkae1262.
9
Enhancement of Fluoride's Antibacterial and Antibiofilm Effects against Oral by the Urea Derivative BPU.
Antibiotics (Basel). 2024 Sep 30;13(10):930. doi: 10.3390/antibiotics13100930.
10
Extracellular DNA-protein interactions.
Curr Opin Struct Biol. 2024 Dec;89:102943. doi: 10.1016/j.sbi.2024.102943. Epub 2024 Oct 16.

本文引用的文献

1
RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms.
Nat Commun. 2023 Nov 27;14(1):7772. doi: 10.1038/s41467-023-43533-3.
3
DNA G-quadruplex-stabilizing metal complexes as anticancer drugs.
J Biol Inorg Chem. 2023 Mar;28(2):117-138. doi: 10.1007/s00775-022-01973-0. Epub 2022 Dec 2.
4
8-Oxoguanine Forms Quartets with a Large Central Cavity.
Biochemistry. 2022 Nov 1;61(21):2390-2397. doi: 10.1021/acs.biochem.2c00478. Epub 2022 Oct 19.
5
DNA Bending Force Facilitates Z-DNA Formation under Physiological Salt Conditions.
J Am Chem Soc. 2022 Jul 27;144(29):13137-13145. doi: 10.1021/jacs.2c02466. Epub 2022 Jul 15.
6
Phenol-Soluble Modulins From Biofilms Form Complexes With DNA to Drive Autoimmunity.
Front Cell Infect Microbiol. 2022 May 11;12:884065. doi: 10.3389/fcimb.2022.884065. eCollection 2022.
7
The structural role of bacterial eDNA in the formation of biofilm streamers.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2113723119. doi: 10.1073/pnas.2113723119. Epub 2022 Mar 15.
10
Z-form extracellular DNA is a structural component of the bacterial biofilm matrix.
Cell. 2021 Nov 11;184(23):5740-5758.e17. doi: 10.1016/j.cell.2021.10.010. Epub 2021 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验