Suppr超能文献

利用近红外光谱成像和极端梯度提升技术在早期生长阶段检测钾缺乏和瞬时蒸腾速率估计。

Detection of Potassium Deficiency and Momentary Transpiration Rate Estimation at Early Growth Stages Using Proximal Hyperspectral Imaging and Extreme Gradient Boosting.

机构信息

Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.

Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon LeZion 7528809, Israel.

出版信息

Sensors (Basel). 2021 Feb 1;21(3):958. doi: 10.3390/s21030958.

Abstract

Potassium is a macro element in plants that is typically supplied to crops in excess throughout the season to avoid a deficit leading to reduced crop yield. Transpiration rate is a momentary physiological attribute that is indicative of soil water content, the plant's water requirements, and abiotic stress factors. In this study, two systems were combined to create a hyperspectral-physiological plant database for classification of potassium treatments (low, medium, and high) and estimation of momentary transpiration rate from hyperspectral images. PlantArray 3.0 was used to control fertigation, log ambient conditions, and calculate transpiration rates. In addition, a semi-automated platform carrying a hyperspectral camera was triggered every hour to capture images of a large array of pepper plants. The combined attributes and spectral information on an hourly basis were used to classify plants into their given potassium treatments (average accuracy = 80%) and to estimate transpiration rate (RMSE = 0.025 g/min, R = 0.75) using the advanced ensemble learning algorithm XGBoost (extreme gradient boosting algorithm). Although potassium has no direct spectral absorption features, the classification results demonstrated the ability to label plants according to potassium treatments based on a remotely measured hyperspectral signal. The ability to estimate transpiration rates for different potassium applications using spectral information can aid in irrigation management and crop yield optimization. These combined results are important for decision-making during the growing season, and particularly at the early stages when potassium levels can still be corrected to prevent yield loss.

摘要

钾是植物中的一种大量元素,通常在整个生长季节过量供应给作物,以避免因缺乏钾而导致作物减产。蒸腾速率是一个瞬时的生理特性,它反映了土壤含水量、植物的水分需求和非生物胁迫因素。在这项研究中,将两个系统结合起来,创建了一个高光谱-生理植物数据库,用于分类钾处理(低、中、高)和从高光谱图像估计瞬时蒸腾速率。PlantArray 3.0 用于控制施肥、记录环境条件和计算蒸腾速率。此外,一个带有高光谱相机的半自动平台每小时触发一次,以拍摄大量辣椒植株的图像。基于每小时的综合属性和光谱信息,将植物分类为给定的钾处理(平均准确率=80%),并使用先进的集成学习算法 XGBoost(极端梯度提升算法)估计蒸腾速率(RMSE=0.025 g/min,R=0.75)。尽管钾没有直接的光谱吸收特征,但分类结果表明,根据 remotely measured hyperspectral signal,能够根据钾处理对植物进行标记。利用光谱信息估计不同钾应用的蒸腾速率的能力可以帮助进行灌溉管理和优化作物产量。这些综合结果对于生长季节的决策制定非常重要,特别是在早期阶段,此时仍然可以纠正钾水平以防止减产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e208/7867110/2614bbd4c713/sensors-21-00958-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验