Suppr超能文献

一种共轭烯烃的生物合成途径:庚-1,3,5-三烯的微生物生产。

A Biological Route to Conjugated Alkenes: Microbial Production of Hepta-1,3,5-triene.

机构信息

Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.

Future Biomanufacturing Research Hub (Future BRH), Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.

出版信息

ACS Synth Biol. 2021 Feb 19;10(2):228-235. doi: 10.1021/acssynbio.0c00464. Epub 2021 Feb 3.

Abstract

Conjugated alkenes such as dienes and polyenes have a range of applications as pharmaceutical agents and valuable building blocks in the polymer industry. Development of a renewable route to these compounds provides an alternative to fossil fuel derived production. The enzyme family of the UbiD decarboxylases offers substantial scope for alkene production, readily converting poly unsaturated acids. However, biochemical pathways producing the required substrates are poorly characterized, and UbiD-application has hitherto been limited to biological styrene production. Herein, we present a proof-of-principle study for microbial production of polyenes using a bioinspired strategy employing a polyketide synthase (PKS) in combination with a UbiD-enzyme. Deconstructing a bacterial iterative type II PKS enabled repurposing the broad-spectrum antibiotic andrimid biosynthesis pathway to access the metabolic intermediate 2,4,6-octatrienoic acid, a valuable chemical for material and pharmaceutical industry. Combination with the fungal ferulic acid decarboxylase (Fdc1) led to a biocatalytic cascade-type reaction for the production of hepta-1,3,5-triene . Our approach provides a novel route to generate unsaturated hydrocarbons and related chemicals and provides a blue-print for future development and application.

摘要

共轭烯烃,如二烯和多烯,作为药物制剂和聚合物工业中有价值的结构单元,具有广泛的应用。开发可再生途径生产这些化合物为源自化石燃料的生产提供了替代方案。UbiD 脱羧酶家族为烯烃生产提供了很大的潜力,可轻松转化多不饱和酸。然而,产生所需底物的生化途径特征很差,并且 UbiD 的应用迄今为止仅限于生物苯乙烯生产。在此,我们提出了一项使用生物启发策略利用聚酮合酶(PKS)与 UbiD 酶组合生产多烯的原理验证研究。解构细菌迭代型 II PKS 使广谱抗生素和瑞米德生物合成途径能够获得代谢中间体 2,4,6-辛三烯酸,这是一种有价值的材料和制药工业化学品。与真菌阿魏酸脱羧酶(Fdc1)结合,导致生物催化级联型反应生成七-1,3,5-三烯。我们的方法为生成不饱和烃和相关化学品提供了一种新途径,并为未来的开发和应用提供了蓝图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验