Suppr超能文献

从大规模手机位置数据中挖掘日常活动链

Mining Daily Activity Chains from Large-Scale Mobile Phone Location Data.

作者信息

Yin Ling, Lin Nan, Zhao Zhiyuan

机构信息

Shenzhen Institutes of Advanced Technologies, Chinese Academy of Science, Shenzhen, China.

Academy of Digital China (Fujian), Fuzhou University, Fuzhou, China.

出版信息

Cities. 2021 Feb;109:103013. doi: 10.1016/j.cities.2020.103013.

Abstract

Understanding residents' daily activity chains provides critical support for various applications in transportation, public health and many other related fields. Recently, mobile phone location datasets have been suggested for mining activity patterns because of their utility and large sample sizes. Although recently machine learning-based models seem to perform well in activity purpose inference using mobile phone location data, most of these models work as black boxes. To address these challenges, this study proposes a flexible white box method to mine human activity chains from large-scale mobile phone location data by integrating both the spatial and temporal features of daily activities with varying weights. We find that the frequency distribution of major activity chain patterns agrees well with the patterns derived based on a travel survey of Shenzhen and a state-of-the-art method. Moreover, a dataset covering over 16.5% of the city population can yield a reasonable outcome of the major activity patterns. The contributions of this study not only lie in offering an effective approach to mining daily activity chains from mobile phone location data but also involve investigating the impact of different data conditions on the model performance, which make using big trajectory data more practical for domain experts.

摘要

了解居民的日常活动链为交通、公共卫生及许多其他相关领域的各种应用提供了关键支持。最近,由于手机位置数据集的实用性和大样本量,人们建议利用其挖掘活动模式。尽管最近基于机器学习的模型在使用手机位置数据进行活动目的推断方面似乎表现良好,但这些模型大多像黑匣子一样工作。为应对这些挑战,本研究提出了一种灵活的白盒方法,通过整合具有不同权重的日常活动的空间和时间特征,从大规模手机位置数据中挖掘人类活动链。我们发现,主要活动链模式的频率分布与基于深圳出行调查和一种先进方法得出的模式非常吻合。此外,覆盖超过16.5%城市人口的数据集能够得出主要活动模式的合理结果。本研究的贡献不仅在于提供了一种从手机位置数据中挖掘日常活动链的有效方法,还在于研究了不同数据条件对模型性能的影响,这使得领域专家使用大轨迹数据更加切实可行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验