The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States.
The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States.
Brain Res. 2021 Apr 1;1756:147332. doi: 10.1016/j.brainres.2021.147332. Epub 2021 Feb 1.
Vagus nerve stimulation (VNS) paired with motor rehabilitation enhances recovery of function after neurological injury in rats and humans. This effect is ascribed to VNS-dependent facilitation of plasticity in motor networks. Previous studies document an inverted-U relationship between VNS intensity and cortical plasticity, such that moderate intensities increase plasticity, while low or high intensity VNS does not. We tested the interaction of moderate and high intensity VNS trains to probe the mechanisms that may underlie VNS-dependent plasticity. Rats performed a behavioral task where VNS was paired with jaw movement during chewing. For five days, subjects received 100 pairings of moderate intensity VNS (Standard VNS), 100 pairings alternating between moderate and high intensity VNS (Interleaved VNS), or 50 pairings of moderate intensity VNS (Short VNS) approximately every 8 s. After the final behavioral session, intracortical microstimulation (ICMS) was used to evaluate movement representations in motor cortex. 100 pairings of moderate intensity VNS enhanced motor cortex plasticity. Replacing half of moderate intensity stimulation with high intensity VNS blocked this enhancement of plasticity. Removing high intensity stimulation, leaving only 50 pairings of moderate intensity VNS, reinstated plasticity. These results demonstrate that there is a period for at least 8 s after high intensity stimulation in which moderate intensity VNS is not able to engage mechanisms required for synaptic reorganization. More importantly, this study demonstrates that changes in stimulation parameters are a critical determinant of the magnitude of plasticity and likely the efficacy of VNS-enhanced recovery.
迷走神经刺激 (VNS) 与运动康复相结合,可增强大鼠和人类神经损伤后的功能恢复。这种效果归因于 VNS 依赖性促进运动网络中的可塑性。先前的研究记录了 VNS 强度与皮质可塑性之间的倒 U 型关系,即中等强度增加可塑性,而低强度或高强度 VNS 则不会。我们测试了中等强度和高强度 VNS 训练的相互作用,以探究可能构成 VNS 依赖性可塑性基础的机制。大鼠进行了一项行为任务,在咀嚼时 VNS 与下颌运动配对。在五天的时间里,受试者接受了 100 次中等强度 VNS(标准 VNS)配对、100 次中等强度和高强度 VNS 交替配对(交错 VNS)或 50 次中等强度 VNS(短 VNS)配对,大约每 8 秒一次。在最后一次行为会议后,使用皮质内微刺激 (ICMS) 评估运动皮层中的运动代表。100 次中等强度 VNS 配对增强了运动皮层的可塑性。用高强度 VNS 代替一半的中等强度刺激会阻止这种可塑性增强。去除高强度刺激,只留下 50 次中等强度 VNS 刺激,恢复了可塑性。这些结果表明,在高强度刺激后至少 8 秒的时间内,中等强度 VNS 无法参与突触重组所需的机制。更重要的是,这项研究表明,刺激参数的变化是可塑性幅度的关键决定因素,可能也是 VNS 增强恢复效果的关键决定因素。