Suppr超能文献

具有隔离、检疫和检测等控制措施的 COVID-19 模型。

A model for COVID-19 with isolation, quarantine and testing as control measures.

机构信息

Escola de Matemática Aplicada, FGV EMAp, Rio de Janeiro, Brazil.

Department of Applied Mathematics, University of Waterloo, Canada.

出版信息

Epidemics. 2021 Mar;34:100437. doi: 10.1016/j.epidem.2021.100437. Epub 2021 Jan 21.

Abstract

In this article we propose a compartmental model for the dynamics of Coronavirus Disease 2019 (COVID-19). We take into account the presence of asymptomatic infections and the main policies that have been adopted so far to contain the epidemic: social distancing, isolation of a portion of the population, quarantine for confirmed cases and testing. We refer to quarantine as strict isolation, and it is applied to confirmed infected cases. In the proposed model, the proportion of people in isolation, the level of contact reduction and the testing rate are control parameters that can vary in time, representing policies that evolve in different stages. We obtain an explicit expression for the basic reproduction number R in terms of the parameters of the disease and of the control policies. In this way we can quantify the effect that isolation and testing have in the evolution of the epidemic. We present a series of simulations to illustrate different realistic scenarios. From the expression of R and the simulations we conclude that isolation (social distancing) and testing among asymptomatic cases are fundamental actions to control the epidemic, and the stricter these measures are and the sooner they are implemented, the more effective they are in flattening the curve of infections. Additionally, we show that people that remain in isolation significantly reduce their probability of contagion, so risk groups should be recommended to maintain a low contact rate during the course of the epidemic.

摘要

本文提出了一种 2019 年冠状病毒病(COVID-19)动力学的房室模型。我们考虑到无症状感染的存在以及迄今为止为控制疫情而采取的主要政策:社会隔离、部分人群隔离、确诊病例隔离和检测。我们将隔离称为严格隔离,并将其应用于确诊感染病例。在所提出的模型中,隔离人群的比例、接触减少的程度和检测率是可以随时间变化的控制参数,代表了在不同阶段演变的政策。我们以疾病和控制政策的参数为条件,给出了基本繁殖数 R 的显式表达式。这样我们就可以量化隔离和检测对疫情演变的影响。我们提出了一系列模拟来演示不同的现实场景。从 R 的表达式和模拟中,我们得出结论,隔离(社会隔离)和对无症状病例的检测是控制疫情的基本措施,这些措施越严格,实施得越早,对感染曲线的平抑效果就越明显。此外,我们还表明,隔离人群显著降低了其感染的可能性,因此应建议风险群体在疫情期间保持低接触率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验