Suppr超能文献

在英国医院中,与 2009 年 H1N1 大流行相比,2010/11 年大流感后季节的 SARIMA 模型预测严重程度和死亡率更高。

SARIMA-modelled greater severity and mortality during the 2010/11 post-pandemic influenza season compared to the 2009 H1N1 pandemic in English hospitals.

机构信息

Imperial College Business School: Department of Economics & Public Policy; Centre for Health Economics & Policy Innovation, London, United Kingdom SW7 2AZ.

Imperial College London: MRC Centre for Global Infectious Disease Analysis (MRC GIDA), Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, London, United Kingdom W2 1PG.

出版信息

Int J Infect Dis. 2021 Apr;105:161-171. doi: 10.1016/j.ijid.2021.01.070. Epub 2021 Feb 3.

Abstract

OBJECTIVE

The COVID-19 pandemic demonstrates the need for understanding pathways to healthcare demand, morbidity, and mortality of pandemic patients. We estimate H1N1 (1) hospitalization rates, (2) severity rates (length of stay, ventilation, pneumonia, and death) of those hospitalized, (3) mortality rates, and (4) time lags between infections and hospitalizations during the pandemic (June 2009 to March 2010) and post-pandemic influenza season (November 2010 to February 2011) in England.

METHODS

Estimates of H1N1 infections from a dynamic transmission model are combined with hospitalizations and severity using time series econometric analyses of administrative patient-level hospital data.

RESULTS

Hospitalization rates were 34% higher and severity rates of those hospitalized were 20%-90% higher in the post-pandemic period than the pandemic. Adults (45-64-years-old) had the highest ventilation and pneumonia hospitalization rates. Hospitalizations did not lag infection during the pandemic for the young (<24-years-old) but lagged by one or more weeks for all ages in the post-pandemic period.

DISCUSSION

The post-pandemic flu season exhibited heightened H1N1 severity, long after the pandemic was declared over. Policymakers should remain vigilant even after pandemics seem to have subsided. Analysis of administrative hospital data and epidemiological modelling estimates can provide valuable insights to inform responses to COVID-19 and future influenza and other disease pandemics.

摘要

目的

COVID-19 大流行表明,有必要了解大流行患者的医疗需求、发病率和死亡率的途径。我们估计了英格兰在大流行期间(2009 年 6 月至 2010 年 3 月)和大流行后流感季节(2010 年 11 月至 2011 年 2 月)的甲型 H1N1(1)住院率、(2)住院患者的严重程度(住院时间、通气、肺炎和死亡)、(3)死亡率以及(4)感染与住院之间的时间滞后。

方法

利用动态传播模型估算的甲型 H1N1 感染数据,结合住院和严重程度,采用时间序列计量经济学分析方法对行政患者层面的医院数据进行分析。

结果

大流行后时期的住院率比大流行时期高 34%,住院患者的严重程度高 20%-90%。成年人(45-64 岁)的通气和肺炎住院率最高。在大流行期间,年轻人(<24 岁)的住院没有滞后于感染,但在大流行后时期,所有年龄段的住院都滞后了一个或多个星期。

讨论

大流行后流感季节的甲型 H1N1 严重程度较高,尽管大流行已经宣布结束。即使在大流行似乎已经平息之后,政策制定者仍应保持警惕。对行政医院数据和流行病学模型估算的分析可以为应对 COVID-19 以及未来的流感和其他疾病大流行提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验