Suppr超能文献

用于增强成骨潜能的水凝胶的合理设计。

Rational design of hydrogels to enhance osteogenic potential.

作者信息

Kim Soyon, Lee Min

机构信息

Division of Advanced Prosthodontics, University of California, Los Angeles, USA.

Department of Bioengineering, University of California, Los Angeles, USA.

出版信息

Chem Mater. 2020 Nov 24;32(22):9508-9530. doi: 10.1021/acs.chemmater.0c03018. Epub 2020 Nov 5.

Abstract

Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and stem cell-based treatments have several limitations, such as source restriction, low stability, difficulties in predicting long-term efficacy, and high costs, among others. These issues have promoted the development of material-based therapy with properties of accessibility, high stability, tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because of their unique hydrophilic nature and tunable physicochemical properties to mimic the native bone environment. However, current hydrogel materials are not ideal candidates due to minimal osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to counterbalance these issues by modifying their biophysical properties. In this article, we review recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies developed to precisely control its bone healing properties.

摘要

骨组织工程(BTE)涵盖生物材料、细胞和生物活性分子领域,以成功引导骨组织的生长和修复。当前的骨组织工程策略依赖于通过支架材料递送成骨分子或细胞。然而,基于生长因子和干细胞的治疗存在若干局限性,例如来源受限、稳定性低、难以预测长期疗效以及成本高等。这些问题推动了具有可及性、高稳定性、可调疗效和低成本生产特性的基于材料的疗法的发展。水凝胶因其独特的亲水性和可调的物理化学性质可模拟天然骨环境而广泛应用于骨组织工程领域。然而,由于目前的水凝胶材料自身的成骨能力极小,并非理想的候选材料。因此,近期关于骨组织工程水凝胶的研究试图通过改变其生物物理性质来平衡这些问题。在本文中,我们综述了水凝胶设计以指导成骨潜能方面的最新进展,并介绍了为精确控制其骨愈合特性而开发的策略。

相似文献

1
Rational design of hydrogels to enhance osteogenic potential.
Chem Mater. 2020 Nov 24;32(22):9508-9530. doi: 10.1021/acs.chemmater.0c03018. Epub 2020 Nov 5.
3
Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering.
Front Pharmacol. 2020 May 6;11:622. doi: 10.3389/fphar.2020.00622. eCollection 2020.
4
Progress in self-healing hydrogels and their applications in bone tissue engineering.
Biomater Adv. 2023 Mar;146:213274. doi: 10.1016/j.bioadv.2022.213274. Epub 2022 Dec 30.
5
Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering.
Gels. 2023 Jul 21;9(7):588. doi: 10.3390/gels9070588.
6
Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering.
ACS Biomater Sci Eng. 2024 Apr 8;10(4):1921-1945. doi: 10.1021/acsbiomaterials.3c01485. Epub 2024 Mar 8.
7
Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110862. doi: 10.1016/j.msec.2020.110862. Epub 2020 Mar 19.
8
Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration.
Acta Biomater. 2021 Dec;136:1-36. doi: 10.1016/j.actbio.2021.09.034. Epub 2021 Sep 23.
9
Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration.
Front Bioeng Biotechnol. 2020 Sep 17;8:587658. doi: 10.3389/fbioe.2020.587658. eCollection 2020.

引用本文的文献

1
Self-Healing Hydrogels: Mechanisms and Biomedical Applications.
MedComm (2020). 2025 Apr 24;6(5):e70181. doi: 10.1002/mco2.70181. eCollection 2025 May.
2
Development of a Photocrosslinkable Collagen-Bone Matrix Hydrogel for Bone Tissue Engineering.
Polymers (Basel). 2025 Mar 29;17(7):935. doi: 10.3390/polym17070935.
3
Exosome-Integrated Hydrogels for Bone Tissue Engineering.
Gels. 2024 Nov 23;10(12):762. doi: 10.3390/gels10120762.
4
Chitosan-grafted Graphene Materials for Drug Delivery in Wound Healing.
Curr Pharm Des. 2025;31(9):691-715. doi: 10.2174/0113816128333493241014134711.
5
Hydrogel Use in Osteonecrosis of the Femoral Head.
Gels. 2024 Aug 22;10(8):544. doi: 10.3390/gels10080544.
6
Nanoclay-Composite Hydrogels for Bone Tissue Engineering.
Gels. 2024 Aug 3;10(8):513. doi: 10.3390/gels10080513.
7
Calcium Phosphates: A Key to Next-Generation In Vitro Bone Modeling.
Adv Healthc Mater. 2024 Nov;13(29):e2401307. doi: 10.1002/adhm.202401307. Epub 2024 Aug 23.
8
Dexamethasone Long-Term Controlled Release from Injectable Dual-Network Hydrogels with Porous Microspheres Immunomodulation Promotes Bone Regeneration.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40581-40601. doi: 10.1021/acsami.4c06661. Epub 2024 Jul 29.
10
Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration.
Cell Commun Signal. 2024 Feb 15;22(1):124. doi: 10.1186/s12964-023-01346-3.

本文引用的文献

1
Impact of Hydrogel Cross-Linking Chemistry on the and Bioactivity of Recombinant Human Bone Morphogenetic Protein-2.
ACS Appl Bio Mater. 2019 May 20;2(5):2006-2012. doi: 10.1021/acsabm.9b00060. Epub 2019 Apr 16.
2
Calcium Phosphate Nanocluster-Loaded Injectable Hydrogel for Bone Regeneration.
ACS Appl Bio Mater. 2019 Oct 21;2(10):4408-4417. doi: 10.1021/acsabm.9b00270. Epub 2019 Sep 10.
3
Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration.
ACS Biomater Sci Eng. 2019 Oct 14;5(10):5384-5391. doi: 10.1021/acsbiomaterials.9b00990. Epub 2019 Sep 10.
4
A Magnetically Responsive Hydrogel System for Controlling the Timing of Bone Progenitor Recruitment and Differentiation Factor Deliveries.
ACS Biomater Sci Eng. 2020 Mar 9;6(3):1522-1534. doi: 10.1021/acsbiomaterials.9b01746. Epub 2020 Feb 12.
6
IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel.
ACS Appl Bio Mater. 2020 Mar 16;3(3):1666-1680. doi: 10.1021/acsabm.9b01227. Epub 2020 Feb 19.
7
Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering.
Int J Biol Macromol. 2020 Nov 1;162:1338-1357. doi: 10.1016/j.ijbiomac.2020.06.138. Epub 2020 Jun 17.
8
Rapid Diels-Alder Cross-linking of Cell Encapsulating Hydrogels.
Chem Mater. 2019 Oct 8;31(19):8035-8043. doi: 10.1021/acs.chemmater.9b02485. Epub 2019 Sep 27.
9
Smart Hydrogels for the Augmentation of Bone Regeneration by Endogenous Mesenchymal Progenitor Cell Recruitment.
Adv Sci (Weinh). 2020 Feb 5;7(7):1903395. doi: 10.1002/advs.201903395. eCollection 2020 Apr.
10
Competitive ligand exchange of crosslinking ions for ionotropic hydrogel formation.
J Mater Chem B. 2016 Oct 7;4(37):6175-6182. doi: 10.1039/c6tb01812b. Epub 2016 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验