Suppr超能文献

一种用于生物标志物检测与监测的超柔性可拉伸适体石墨烯纳米传感器。

An Ultraflexible and Stretchable Aptameric Graphene Nanosensor for Biomarker Detection and Monitoring.

作者信息

Wang Ziran, Hao Zhuang, Yu Shifeng, De Moraes Carlos Gustavo, Suh Leejee H, Zhao Xuezeng, Lin Qiao

机构信息

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Adv Funct Mater. 2019 Nov 1;29(44). doi: 10.1002/adfm.201905202. Epub 2019 Aug 29.

Abstract

An ultraflexible and stretchable field-effect transistor nanosensor is presented that uses aptamer-functionalized monolayer graphene as the conducting channel. Specific binding of the aptamer with the target biomarker induces a change in the carrier concentration of the graphene, which is measured to determine the biomarker concentration. Based on a Mylar substrate that is only 2.5-μm thick, the nanosensor is capable of conforming to underlying surfaces (e.g., those of human tissue or skin) that undergo large bending, twisting, and stretching deformations. In experimental testing, the device is rolled on cylindrical surfaces with radii down to 40 μm, twisted by angles ranging from -180° to 180°, or stretched by extensions up to 125%. With these large deformations applied either cyclically or non-recurrently, the device is shown to incur no visible mechanical damage, maintain consistent electrical properties, and allow detection of TNF-, an inflammatory cytokine biomarker, with consistently high selectivity and low limit of detection (down to 5 × 10M). The nanosensor can thus potentially enable consistent and reliable detection of liquid-borne biomarkers on human skin or tissue surfaces that undergo large mechanical deformations.

摘要

本文介绍了一种超灵活且可拉伸的场效应晶体管纳米传感器,该传感器使用适配体功能化的单层石墨烯作为导电通道。适配体与目标生物标志物的特异性结合会引起石墨烯载流子浓度的变化,通过测量该变化来确定生物标志物的浓度。基于仅2.5微米厚的聚酯薄膜基板,该纳米传感器能够贴合经历大幅弯曲、扭曲和拉伸变形的下层表面(例如人体组织或皮肤表面)。在实验测试中,该器件可在半径低至40微米的圆柱形表面上滚动,可在-180°至180°的角度范围内扭曲,或在高达125%的伸长率下拉伸。无论是循环施加还是非循环施加这些大变形,该器件均未出现可见的机械损伤,保持了一致的电学性能,并能够以始终如一的高选择性和低检测限(低至5×10M)检测炎症细胞因子生物标志物肿瘤坏死因子(TNF-)。因此,这种纳米传感器有可能在经历大机械变形的人体皮肤或组织表面上实现对液体携带生物标志物的持续可靠检测。

相似文献

1
An Ultraflexible and Stretchable Aptameric Graphene Nanosensor for Biomarker Detection and Monitoring.
Adv Funct Mater. 2019 Nov 1;29(44). doi: 10.1002/adfm.201905202. Epub 2019 Aug 29.
2
A Wearable and Deformable Graphene-Based Affinity Nanosensor for Monitoring of Cytokines in Biofluids.
Nanomaterials (Basel). 2020 Jul 31;10(8):1503. doi: 10.3390/nano10081503.
4
Real-Time Monitoring of Insulin Using a Graphene Field-Effect Transistor Aptameric Nanosensor.
ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27504-27511. doi: 10.1021/acsami.7b07684. Epub 2017 Aug 11.
5
An Internally Attached Aptameric Graphene Nanosensor for Sensitive Vasopressin Measurement in Critical Patient Monitoring.
ACS Sens. 2024 Sep 27;9(9):4915-4923. doi: 10.1021/acssensors.4c01519. Epub 2024 Sep 13.
6
A graphene aptasensor for biomarker detection in human serum.
Electrochim Acta. 2018 Nov 10;290:356-363. doi: 10.1016/j.electacta.2018.08.062. Epub 2018 Sep 13.
7
Towards detection of biomarkers in the eye using an aptamer-based graphene affinity nanobiosensor.
Talanta. 2022 Dec 1;250:123697. doi: 10.1016/j.talanta.2022.123697. Epub 2022 Jun 20.
9
Flexible/Regenerative Nanosensor with Automatic Sweat Collection for Cytokine Storm Biomarker Detection.
ACS Nano. 2024 Aug 13;18(32):21198-21210. doi: 10.1021/acsnano.4c04456. Epub 2024 Aug 4.
10
An aptameric graphene nanosensor for label-free detection of small-molecule biomarkers.
Biosens Bioelectron. 2015 Sep 15;71:222-229. doi: 10.1016/j.bios.2015.04.025. Epub 2015 Apr 13.

引用本文的文献

1
Graphene-based wearable biosensors for point-of-care diagnostics: From surface functionalization to biomarker detection.
Mater Today Bio. 2025 Mar 14;32:101667. doi: 10.1016/j.mtbio.2025.101667. eCollection 2025 Jun.
3
Integration Strategies and Formats in Field-Effect Transistor Chemo- and Biosensors: A Critical Review.
ACS Sens. 2025 Apr 25;10(4):2431-2452. doi: 10.1021/acssensors.4c03633. Epub 2025 Apr 15.
5
The application of tissue engineering strategies for uterine regeneration.
Mater Today Bio. 2025 Feb 18;31:101594. doi: 10.1016/j.mtbio.2025.101594. eCollection 2025 Apr.
6
Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing.
Nanomicro Lett. 2024 Oct 7;17(1):34. doi: 10.1007/s40820-024-01534-x.
7
Challenges for Field-Effect-Transistor-Based Graphene Biosensors.
Materials (Basel). 2024 Jan 9;17(2):333. doi: 10.3390/ma17020333.
8
Direct-Ink-Writing 3D-Printed Bioelectronics.
Mater Today (Kidlington). 2023 Dec;71:135-151. doi: 10.1016/j.mattod.2023.09.006. Epub 2023 Sep 30.
9
Rapid isolation of anti-idiotype aptamers for quantification of human monoclonal antibodies against SARS-CoV-2 spike protein.
Biosens Bioelectron. 2024 Feb 15;246:115842. doi: 10.1016/j.bios.2023.115842. Epub 2023 Nov 20.
10
Field effect transistor based wearable biosensors for healthcare monitoring.
J Nanobiotechnology. 2023 Nov 7;21(1):411. doi: 10.1186/s12951-023-02153-1.

本文引用的文献

1
Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva.
Biosens Bioelectron. 2019 Jun 1;134:16-23. doi: 10.1016/j.bios.2019.03.053. Epub 2019 Mar 29.
2
Wearable biosensors for healthcare monitoring.
Nat Biotechnol. 2019 Apr;37(4):389-406. doi: 10.1038/s41587-019-0045-y. Epub 2019 Feb 25.
4
Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics.
Nature. 2018 Sep;561(7724):516-521. doi: 10.1038/s41586-018-0536-x. Epub 2018 Sep 26.
6
Fully Rollable Lead-Free Poly(vinylidene fluoride)-Niobate-Based Nanogenerator with Ultra-Flexible Nano-Network Electrodes.
ACS Nano. 2018 May 22;12(5):4803-4811. doi: 10.1021/acsnano.8b01534. Epub 2018 May 1.
7
Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.
Nature. 2018 Mar 1;555(7694):83-88. doi: 10.1038/nature25494. Epub 2018 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验