Suppr超能文献

西班牙车辆碰撞事故中的驾驶员责任评估

Driver Liability Assessment in Vehicle Collisions in Spain.

作者信息

Sanjurjo-de-No Almudena, Arenas-Ramírez Blanca, Mira José, Aparicio-Izquierdo Francisco

机构信息

Instituto Universitario de Investigación del Automóvil Francisco Aparicio Izquierdo (INSIA-UPM), Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain.

Statistics Department, Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain.

出版信息

Int J Environ Res Public Health. 2021 Feb 4;18(4):1475. doi: 10.3390/ijerph18041475.

Abstract

An accurate estimation of exposure is essential for road collision rate estimation, which is key when evaluating the impact of road safety measures. The quasi-induced exposure method was developed to estimate relative exposure for different driver groups based on its main hypothesis: the not-at-fault drivers involved in two-vehicle collisions are taken as a random sample of driver populations. Liability assignment is thus crucial in this method to identify not-at-fault drivers, but often no liability labels are given in collision records, so unsupervised analysis tools are required. To date, most researchers consider only driver and speed offences in liability assignment, but an open question is if more information could be added. To this end, in this paper, the visual clustering technique of self-organizing maps (SOM) has been applied to better understand the multivariate structure in the data, to find out the most important variables for driver liability, analyzing their influence, and to identify relevant liability patterns. The results show that alcohol/drug use could be influential on liability and further analysis is required for disability and sudden illness. More information has been used, given that a larger proportion of the data was considered. SOM thus appears as a promising tool for liability assessment.

摘要

准确估计暴露量对于道路碰撞率估计至关重要,而道路碰撞率估计是评估道路安全措施影响时的关键。准诱导暴露方法基于其主要假设而开发,用于估计不同驾驶员群体的相对暴露量:涉及两车碰撞的无过错驾驶员被视为驾驶员总体的随机样本。因此,责任认定在该方法中对于识别无过错驾驶员至关重要,但碰撞记录中往往没有责任标签,所以需要无监督分析工具。迄今为止,大多数研究人员在责任认定中仅考虑驾驶员和速度违规行为,但一个悬而未决的问题是是否可以添加更多信息。为此,本文应用了自组织映射(SOM)的可视化聚类技术,以更好地理解数据中的多变量结构,找出对驾驶员责任最重要的变量,分析它们的影响,并识别相关的责任模式。结果表明,酒精/药物使用可能对责任有影响,对于残疾和突发疾病还需要进一步分析。由于考虑了更大比例的数据,因此使用了更多信息。因此,SOM似乎是一种很有前途的责任评估工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fb/7915838/d7099f698e86/ijerph-18-01475-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验