文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症抗血管生成治疗的纳米材料:个性化医疗的有前途的工具。

Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine.

机构信息

Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

出版信息

Int J Mol Sci. 2021 Feb 5;22(4):1631. doi: 10.3390/ijms22041631.


DOI:10.3390/ijms22041631
PMID:33562829
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7915670/
Abstract

Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.

摘要

血管生成是癌症的特征之一。有几项研究表明,血管内皮生长因子(VEGF)在血管生成进展中起主导作用。抗血管生成药物已得到广泛认可,并广泛应用于多种人类癌症,这使得人们对癌症治疗产生了浓厚的兴趣。然而,与细胞毒性相比,这种治疗方法可能导致耐药性、侵袭、远处转移和总体生存率的恶化。此外,将阳性生物标志物纳入临床环境以跟踪抗血管生成治疗的效果存在重大障碍。这些缺点强调了识别针对多种血管生成因子的额外血管生成抑制剂或开发当前抑制剂的药物输送新方法的必要性。纳米粒子的巨大优势在于,基于其特定的性质,它们具有成为集中于生物系统并控制各种重要功能的有效机制的潜力。在各种治疗方法中,纳米技术已成为治疗不同癌症类型的新策略。本文试图展示靶向纳米粒子及其分子成像应用的巨大潜力。值得注意的是,已经开发和设计了几种纳米粒子来展示抗血管生成特性。这种纳米医学可以有效地使用抗血管生成疗法作为替代方法来治疗多种癌症。我们还讨论了最新的抗血管生成和纳米治疗策略,并强调了肿瘤血管及其微环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/66ec4898dbca/ijms-22-01631-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/c284a3a3ef52/ijms-22-01631-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/9de31450475c/ijms-22-01631-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/eab43bf1c991/ijms-22-01631-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/1d6777366b5b/ijms-22-01631-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/4a2130f19ad0/ijms-22-01631-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/0fbb2b877629/ijms-22-01631-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/66ec4898dbca/ijms-22-01631-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/c284a3a3ef52/ijms-22-01631-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/9de31450475c/ijms-22-01631-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/eab43bf1c991/ijms-22-01631-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/1d6777366b5b/ijms-22-01631-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/4a2130f19ad0/ijms-22-01631-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/0fbb2b877629/ijms-22-01631-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d4/7915670/66ec4898dbca/ijms-22-01631-g007.jpg

相似文献

[1]
Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine.

Int J Mol Sci. 2021-2-5

[2]
Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy.

Biomaterials. 2014-12-16

[3]
Recent Advancements of Nanomedicine towards Antiangiogenic Therapy in Cancer.

Int J Mol Sci. 2020-1-10

[4]
Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer.

Life Sci. 2024-3-15

[5]
Assessing the in vivo efficacy of biologic antiangiogenic therapies.

Cancer Chemother Pharmacol. 2012-10-9

[6]
Engineered Nanoparticles for Effective Redox Signaling During Angiogenic and Antiangiogenic Therapy.

Antioxid Redox Signal. 2018-8-24

[7]
Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies.

J Clin Oncol. 2012-9-24

[8]
Biomarkers of evasive resistance predict disease progression in cancer patients treated with antiangiogenic therapies.

Oncotarget. 2016-4-12

[9]
Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist.

Eur Cytokine Netw. 2009-12

[10]
Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor.

Oncologist. 2015-6

引用本文的文献

[1]
Green biosynthesis of bimetallic silver titanium dioxide nanoparticles using Pluchea indica with their anticancer, antimicrobial, and antioxidant activities.

Sci Rep. 2025-7-23

[2]
Biotechnological Applications of Biogenic Nanomaterials from Red Seaweed: A Systematic Review (2014-2024).

Int J Mol Sci. 2025-4-30

[3]
Tumor-specific liquid metal nitric oxide nanogenerator for enhanced breast cancer therapy.

Asian J Pharm Sci. 2025-4

[4]
Nanotherapeutic Formulations for the Delivery of Cancer Antiangiogenics.

Mol Pharm. 2025-5-5

[5]
Navigating liver cancer: Precision targeting for enhanced treatment outcomes.

Drug Deliv Transl Res. 2025-6

[6]
Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition.

J Hematol Oncol. 2025-1-13

[7]
"Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles".

Biotechnol Notes. 2024-6-1

[8]
Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications.

Biosensors (Basel). 2024-5-28

[9]
Development and experimental validation of an M2 macrophage and platelet-associated gene signature to predict prognosis and immunotherapy sensitivity in bladder cancer.

Cancer Sci. 2024-5

[10]
Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics.

J Nanobiotechnology. 2023-11-20

本文引用的文献

[1]
Quantification of tumor angiogenesis with contrast-enhanced x-ray imaging in preclinical studies: a review.

Biomed Phys Eng Express. 2018-9-7

[2]
Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine.

Cancers (Basel). 2020-9-29

[3]
Phage Display Derived Monoclonal Antibodies: From Bench to Bedside.

Front Immunol. 2020

[4]
Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity.

Exp Mol Med. 2020-9

[5]
Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma.

N Engl J Med. 2020-5-14

[6]
Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook.

Cancer Treat Rev. 2020-3-26

[7]
FITC/suramin harboring silica nanoformulations for cellular and embryonic imaging/anti-angiogenic theranostics.

J Mater Chem B. 2015-11-7

[8]
Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study.

Nanoscale. 2020-3-31

[9]
Resistance Mechanisms to Anti-angiogenic Therapies in Cancer.

Front Oncol. 2020-2-27

[10]
Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment.

J Clin Med. 2019-12-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索