Suppr超能文献

用于超声图像中非酒精性脂肪肝分类的组合深度学习算法的实现

Implementation of Combinational Deep Learning Algorithm for Non-alcoholic Fatty Liver Classification in Ultrasound Images.

作者信息

Zamanian H, Mostaar A, Azadeh P, Ahmadi M

机构信息

MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

PhD, Department of Medical Physics and Biomedical Engineering and, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

J Biomed Phys Eng. 2021 Feb 1;11(1):73-84. doi: 10.31661/jbpe.v0i0.2009-1180. eCollection 2021 Feb.

Abstract

BACKGROUND

Nowadays, fatty liver is one of the commonly occurred diseases for the liver which can be observed generally in obese patients. Final results from a variety of exams and imaging methods can help to identify and evaluate people affected by this condition.

OBJECTIVE

The aim of this study is to present a combined algorithm based on neural networks for the classification of ultrasound ‎images from fatty liver affected patients.

MATERIAL AND METHODS

In experimental research can be categorized as a diagnostic study which focuses on classification of the acquired ultrasonography images for 55 patients with fatty liver. We implemented pre-trained convolutional neural networks of Inception-ResNetv2, GoogleNet, AlexNet, and ResNet101 to extract features from the images and after combining these resulted features, we provided support vector machine (SVM) algorithm to classify the liver images. Then the results are compared with the ones in implementing the algorithms independently.

RESULTS

The area under the receiver operating characteristic curve (AUC) for the introduced combined network resulted in 0.9999, which is a better result compared to any of the other introduced algorithms. The resulted accuracy for the proposed network also caused 0.9864, which seems acceptable accuracy for clinical application.

CONCLUSION

The proposed network can be used with high accuracy to classify ultrasound images of the liver to normal or fatty. The presented approach besides the high AUC in comparison with other methods have the independence of the method from the ‎user or expert interference.

摘要

背景

如今,脂肪肝是肝脏常见疾病之一,在肥胖患者中普遍可见。各种检查和成像方法的最终结果有助于识别和评估受此疾病影响的人群。

目的

本研究旨在提出一种基于神经网络的组合算法,用于对脂肪肝患者的超声图像进行分类。

材料与方法

本实验研究可归类为诊断性研究,重点是对55例脂肪肝患者获取的超声图像进行分类。我们实现了预训练的Inception-ResNetv2、GoogleNet、AlexNet和ResNet101卷积神经网络,从图像中提取特征,并在组合这些特征后,提供支持向量机(SVM)算法对肝脏图像进行分类。然后将结果与独立实施算法的结果进行比较。

结果

引入的组合网络的受试者工作特征曲线(AUC)下面积为0.9999,这比其他任何引入的算法都有更好的结果。所提出网络的准确率为0.9864,这对于临床应用来说似乎是可接受的准确率。

结论

所提出的网络可高精度地用于将肝脏超声图像分类为正常或脂肪肝。与其他方法相比,所提出的方法除了具有高AUC外,还具有方法独立于用户或专家干扰的特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7713/7859380/40c6d0e9b4fb/JBPE-11-73-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验