Suppr超能文献

利用从组织中获得的 FTIR 信号通过神经网络对甲状腺良恶性病变进行鉴别。

Discrimination of malignant from benign thyroid lesions through neural networks using FTIR signals obtained from tissues.

机构信息

The Graduate School, University of Santo Tomas, España, 1015, Manila, Philippines.

Research Center for the Natural and Applied Sciences, University of Santo Tomas, España, 1015, Manila, Philippines.

出版信息

Anal Bioanal Chem. 2021 Mar;413(8):2163-2180. doi: 10.1007/s00216-021-03183-0. Epub 2021 Feb 10.

Abstract

The current gold standard in cancer diagnosis-the microscopic examination of hematoxylin and eosin (H&E)-stained biopsies-is prone to bias since it greatly relies on visual examination. Hence, there is a need to develop a more sensitive and specific method for diagnosing cancer. Here, Fourier transform infrared (FTIR) spectroscopy of thyroid tumors (n = 164; 76 malignant, 88 benign) was performed and five (5) neural network (NN) models were designed to discriminate the obtained spectral data. PCA-LDA was used as classical benchmark for comparison. Each NN model was evaluated using a stratified 10-fold cross-validation method to avoid overfitting, and the performance metrics-accuracy, area under the curve (AUC), positive predictive value (PPV), negative predictive value (NPV), specificity rate (SR), and recall rate (RR)-were averaged for comparison. All NN models were able to perform excellently as classifiers, and all were able to surpass the LDA model in terms of accuracy. Among the NN models, the RNN model performed best, having an AUC of 95.29% ± 6.08%, an accuracy of 98.06% ± 2.87%, a PPV of 98.57% ± 4.52%, a NPV of 93.18% ± 7.93%, a SR value of 98.89% ± 3.51%, and a RR value of 91.25% ± 10.29%. The RNN model outperformed the LDA model for all metrics except for the AUC, NPV, and RR. In conclusion, NN-based tools were able to predict thyroid cancer based on infrared spectroscopy of tissues with a high level of diagnostic performance in comparison to the gold standard.

摘要

当前癌症诊断的金标准——苏木精和伊红(H&E)染色活检的显微镜检查——容易出现偏差,因为它非常依赖于视觉检查。因此,需要开发一种更敏感和特异的方法来诊断癌症。在这里,对 164 例甲状腺肿瘤(76 例恶性,88 例良性)进行了傅里叶变换红外(FTIR)光谱分析,并设计了 5 个神经网络(NN)模型来区分获得的光谱数据。PCA-LDA 被用作比较的经典基准。每个 NN 模型都使用分层 10 倍交叉验证方法进行评估,以避免过拟合,并对性能指标——准确性、曲线下面积(AUC)、阳性预测值(PPV)、阴性预测值(NPV)、特异性率(SR)和召回率(RR)进行平均比较。所有的 NN 模型都能够作为分类器出色地工作,并且在准确性方面都能够超过 LDA 模型。在这些 NN 模型中,RNN 模型表现最好,AUC 为 95.29%±6.08%,准确性为 98.06%±2.87%,PPV 为 98.57%±4.52%,NPV 为 93.18%±7.93%,SR 值为 98.89%±3.51%,RR 值为 91.25%±10.29%。除 AUC、NPV 和 RR 外,RNN 模型在所有指标上均优于 LDA 模型。总之,与金标准相比,基于 NN 的工具能够基于组织的红外光谱预测甲状腺癌,具有较高的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验