Kostarev Aleksandr, Abdosamadi Mohammad K, Sugimoto Hiroshi, Fujii Minoru, Jannasch Anita, Schäffer Erik
Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.
Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan.
Nano Lett. 2025 Sep 10;25(36):13476-13481. doi: 10.1021/acs.nanolett.5c02698. Epub 2025 Aug 5.
Precise force measurements are crucial for understanding fundamental physics or nanoscale interactions, such as those of molecular machines in biology. Optical tweezers are versatile force transducers for such measurements, enabling meticulous manipulation of small particles. However, achieving high-resolution, subfemtonewton force measurements under physiological conditions remains challenging due to thermal fluctuations and instrument noise. Here, we employed an ultrastable optical tweezers setup in an isolated environment with precise temperature control, which minimized instrumental noise and enabled prolonged, low-force measurements. We utilized water-suspended, high-refractive index silicon nanospheres for improved resolution and trapping stability. Our system achieved a force resolution of ≈60 aN, with a sensitivity of 2.7 fN Hz, allowing us to measure forces as low as 0.30 ± 0.06 fN. Our drag force measurements demonstrate the importance of optimized experimental conditions for low-force measurements, providing a robust framework for scientific investigations that require high-precision force characterization.
精确的力测量对于理解基础物理学或纳米尺度的相互作用至关重要,例如生物学中分子机器的相互作用。光镊是用于此类测量的多功能力传感器,能够对小颗粒进行精细操纵。然而,由于热波动和仪器噪声,在生理条件下实现高分辨率、亚飞牛顿力测量仍然具有挑战性。在这里,我们在一个具有精确温度控制的隔离环境中采用了超稳定光镊装置,这将仪器噪声降至最低,并实现了长时间的低力测量。我们使用水悬浮的高折射率硅纳米球来提高分辨率和捕获稳定性。我们的系统实现了约60阿牛的力分辨率,灵敏度为2.7飞牛/赫兹,使我们能够测量低至0.30±0.06飞牛的力。我们的阻力测量证明了优化实验条件对于低力测量的重要性,为需要高精度力表征的科学研究提供了一个强大的框架。