Suppr超能文献

用小自由度评估 SEM 模型拟合度。

Evaluating SEM Model Fit with Small Degrees of Freedom.

机构信息

Department of Psychology, University of South Carolina.

Department of Educational Studies, University of South Carolina.

出版信息

Multivariate Behav Res. 2022 Mar-May;57(2-3):179-207. doi: 10.1080/00273171.2020.1868965. Epub 2021 Feb 12.

Abstract

Research has revealed that the performance of root mean square error of approximation (RMSEA) in assessing structural equation models with small degrees of freedom () is suboptimal, often resulting in the rejection of correctly specified or closely fitted models. This study investigates the performance of standardized root mean square residual (SRMR) and comparative fit index (CFI) in small models with various levels of factor loadings, sample sizes, and model misspecifications. We find that, in comparison with RMSEA, population SRMR and CFI are less susceptible to the effects of . In small models, the sample SRMR and CFI could provide more useful information to differentiate models with various levels of misfit. The confidence intervals and -values of a close fit were generally accurate for all three fit indices. We recommend researchers use caution when interpreting RMSEA for models with small and to rely more on SRMR and CFI.

摘要

研究表明,在评估自由度较小()的结构方程模型时,逼近均方根误差(RMSEA)的性能并不理想,这往往导致正确指定或拟合良好的模型被拒绝。本研究调查了标准化均方根残差(SRMR)和比较拟合指数(CFI)在具有不同因子负荷、样本大小和模型误设定水平的小 模型中的表现。我们发现,与 RMSEA 相比,总体 SRMR 和 CFI 受 的影响较小。在小 模型中,样本 SRMR 和 CFI 可以为区分具有不同失配程度的模型提供更有用的信息。对于所有三个拟合指标,接近拟合的置信区间和 -值通常都是准确的。我们建议研究人员在对小 模型使用 RMSEA 时要谨慎,并更多地依赖 SRMR 和 CFI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验