胶质母细胞瘤中的耐药性:氧化应激的两面性

Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress.

作者信息

Olivier Christophe, Oliver Lisa, Lalier Lisenn, Vallette François M

机构信息

Faculté des Sciences Pharmaceutiques et Biologiques, Nantes, France.

Université de Nantes, INSERM, CRCINA, Nantes, France.

出版信息

Front Mol Biosci. 2021 Jan 27;7:620677. doi: 10.3389/fmolb.2020.620677. eCollection 2020.

Abstract

Glioblastomas (GBM) are the most common primary brain tumor with a median survival of 15 months. A population of cells with stem cell properties (glioblastoma stem cells, GSCs) drives the initiation and progression of GBM and is localized in specialized microenvironments which support their behavior. GBM are characterized as extremely resistant to therapy, resulting in tumor recurrence. Reactive oxygen species (ROS) control the cellular stability by influencing different signaling pathways. Normally, redox systems prevent cell oxidative damage; however, in gliomagenesis, the cellular redox mechanisms are highly impaired. Herein we review the dual nature of the redox status in drug resistance. ROS generation in tumor cells affects the cell cycle and is involved in tumor progression and drug resistance in GBM. However, excess ROS production has been found to induce cell death programs such as apoptosis and autophagy. Since GBM cells have a high metabolic rate and produce high levels of ROS, metabolic adaptation in these cells plays an essential role in resistance to oxidative stress-induced cell death. Finally, the microenvironment with the stromal components participates in the enhancement of the oxidative stress to promote tumor progression and drug resistance.

摘要

胶质母细胞瘤(GBM)是最常见的原发性脑肿瘤,中位生存期为15个月。具有干细胞特性的细胞群(胶质母细胞瘤干细胞,GSCs)驱动GBM的发生和发展,并定位于支持其行为的特殊微环境中。GBM的特点是对治疗极具抗性,导致肿瘤复发。活性氧(ROS)通过影响不同的信号通路来控制细胞稳定性。正常情况下,氧化还原系统可防止细胞氧化损伤;然而,在胶质瘤发生过程中,细胞氧化还原机制严重受损。在此,我们综述了耐药性中氧化还原状态的双重性质。肿瘤细胞中ROS的产生影响细胞周期,并参与GBM的肿瘤进展和耐药性。然而,已发现过量的ROS产生会诱导细胞死亡程序,如凋亡和自噬。由于GBM细胞具有高代谢率并产生高水平的ROS,这些细胞中的代谢适应在抵抗氧化应激诱导的细胞死亡中起着至关重要的作用。最后,具有基质成分的微环境参与增强氧化应激,以促进肿瘤进展和耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c6/7873048/4fd783af3d82/fmolb-07-620677-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索