Department of Neurology (M.M., K.T., H.C., D.J.R., S.A., A.V., A.B., J.C., S.P.), Columbia University Irving Medical Center, New York.
Department of Neurosurgery, RWTH Aachen University, Germany (M.W., G.A.S.).
Stroke. 2021 Apr;52(4):1370-1379. doi: 10.1161/STROKEAHA.120.032546. Epub 2021 Feb 18.
Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage negatively impacts long-term recovery but is often detected too late to prevent damage. We aim to develop hourly risk scores using routinely collected clinical data to detect DCI.
A DCI classification model was trained using vital sign measurements (heart rate, blood pressure, respiratory rate, and oxygen saturation) and demographics routinely collected for clinical care. Twenty-two time-varying physiological measures were computed including mean, SD, and cross-correlation of heart rate time series with each of the other vitals. Classification was achieved using an ensemble approach with L2-regularized logistic regression, random forest, and support vector machines models. Classifier performance was determined by area under the receiver operating characteristic curves and confusion matrices. Hourly DCI risk scores were generated as the posterior probability at time using the Ensemble classifier on cohorts recruited at 2 external institutions (n=38 and 40).
Three hundred ten patients were included in the training model (median, 54 years old [interquartile range, 45-65]; 80.2% women, 28.4% Hunt and Hess scale 4-5, 38.7% Modified Fisher Scale 3-4); 101 (33%) developed DCI with a median onset day 6 (interquartile range, 5-8). Classification accuracy before DCI onset was 0.83 (interquartile range, 0.76-0.83) area under the receiver operating characteristic curve. Risk scores applied to external institution datasets correctly predicted 64% and 91% of DCI events as early as 12 hours before clinical detection, with 2.7 and 1.6 true alerts for every false alert.
An hourly risk score for DCI derived from routine vital signs may have the potential to alert clinicians to DCI, which could reduce neurological injury.
动脉瘤性蛛网膜下腔出血(SAH)后迟发性脑缺血(DCI)对长期恢复有负面影响,但通常发现得太晚,无法预防损伤。我们旨在开发使用常规收集的临床数据来检测 DCI 的每小时风险评分。
使用生命体征测量值(心率、血压、呼吸频率和血氧饱和度)和常规收集的人口统计学数据来训练 DCI 分类模型。计算了 22 个时变生理测量值,包括心率时间序列与其他每个生命体征的平均值、标准差和互相关。使用 L2 正则化逻辑回归、随机森林和支持向量机模型的集成方法进行分类。通过接收器工作特征曲线和混淆矩阵确定分类器性能。使用在 2 个外部机构(n=38 和 40)招募的队列在时间 使用 Ensemble 分类器生成每小时 DCI 风险评分。
纳入了 310 例患者的训练模型(中位数年龄 54 岁[四分位距,45-65];80.2%为女性,28.4%为 Hunt 和 Hess 分级 4-5 级,38.7%为改良 Fisher 分级 3-4 级);101 例(33%)发生 DCI,中位发病日为 6 天(四分位距,5-8 天)。在 DCI 发病前,诊断准确率为 0.83(四分位距,0.76-0.83),接收器工作特征曲线下面积。风险评分应用于外部机构数据集,可以在临床检测前 12 小时内正确预测 64%和 91%的 DCI 事件,每出现 2.7 次和 1.6 次假警报就有 1 次真警报。
从常规生命体征中得出的每小时 DCI 风险评分可能有潜力提醒临床医生注意 DCI,从而减少神经损伤。